論文の概要: Detachedly Learn a Classifier for Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2302.11730v1
- Date: Thu, 23 Feb 2023 01:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 16:38:24.096286
- Title: Detachedly Learn a Classifier for Class-Incremental Learning
- Title(参考訳): クラス増分学習のための分類器の分離学習
- Authors: Ziheng Li, Shibo Jie, and Zhi-Hong Deng
- Abstract要約: 本稿では,バニラ体験リプレイ(ER)の失敗は,従来のタスクの不要な再学習と,現在のタスクと以前のタスクとを区別する能力の欠如が原因であることを示す。
本稿では,新しいリプレイ戦略・タスク認識体験リプレイを提案する。
実験の結果,本手法は最先端の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 11.865788374587734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In continual learning, model needs to continually learn a feature extractor
and classifier on a sequence of tasks. This paper focuses on how to learn a
classifier based on a pretrained feature extractor under continual learning
setting. We present an probabilistic analysis that the failure of vanilla
experience replay (ER) comes from unnecessary re-learning of previous tasks and
incompetence to distinguish current task from the previous ones, which is the
cause of knowledge degradation and prediction bias. To overcome these
weaknesses, we propose a novel replay strategy task-aware experience replay. It
rebalances the replay loss and detaches classifier weight for the old tasks
from the update process, by which the previous knowledge is kept intact and the
overfitting on episodic memory is alleviated. Experimental results show our
method outperforms current state-of-the-art methods.
- Abstract(参考訳): 継続的学習では、モデルは一連のタスクで機能抽出子と分類子を継続的に学習する必要がある。
本稿では,事前学習された特徴抽出器に基づく分類器の学習方法について述べる。
本稿では,バニラ体験リプレイ(ER)の失敗は,従来のタスクの不要な再学習と,知識劣化と予測バイアスの原因である現在のタスクとを区別する能力の欠如から生じる,確率論的解析について述べる。
これらの弱点を克服するため、我々は新しいリプレイ戦略タスク認識体験リプレイを提案する。
更新プロセスから古いタスクのリプレイロスと分類器の重みを再バランスさせ、以前の知識をそのまま保持し、エピソディックメモリの過剰化を緩和する。
実験の結果,本手法は最先端の手法よりも優れていた。
関連論文リスト
- Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation [3.8506666685467343]
連続学習では、モデルが新しいタスクを学ぶと、以前の知識は忘れられる。
本稿では, 自己蒸留による伝達可能な知識の獲得により, この問題の解決を試みた。
提案手法は,CIFAR10,CIFAR100,MinimageNetデータセットを用いた実験により従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-17T16:26:33Z) - Strike a Balance in Continual Panoptic Segmentation [60.26892488010291]
既存の知識の安定性と新しい情報への適応性のバランスをとるため,過去クラスのバックトレース蒸留を導入する。
また,リプレイ用サンプルセットのクラス分布と過去のトレーニングデータとの整合性を考慮したクラス比記憶戦略を導入する。
連続パノプティカルバランス(BalConpas)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T09:58:20Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
非典型的なクラスインクリメンタル学習は、過去のトレーニングデータにアクセスすることなく、新しいタスクと古いタスクの両方を学ぶことを目的としている。
本稿では, きめ細かい知識選択と復元のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-20T02:34:11Z) - Replay-enhanced Continual Reinforcement Learning [37.34722105058351]
本稿では,新しいタスクにおける既存のリプレイ方式の可塑性を大幅に向上させるリプレイ拡張手法であるRECALLを紹介する。
Continual Worldベンチマークの実験では、RECALLは純粋に完全なメモリリプレイよりもはるかに優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-11-20T06:21:52Z) - New Insights on Reducing Abrupt Representation Change in Online
Continual Learning [69.05515249097208]
我々は、以前に観測されていないクラスが入ってくるデータストリームに現れるときに発生する観測データの表現の変化に焦点を当てる。
Experience Replayを適用すると、新たに追加されたクラスの表現が以前のクラスと大幅に重複することを示します。
本稿では,新しいクラスに対応するために,学習した表現を劇的な適応から保護することで,この問題を緩和する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T01:37:00Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
本稿では,2段階の学習フレームワークである経験連続再生(ERR)を提案する。
ERRは、すべてのベースラインの性能を一貫して改善し、現在の最先端の手法を超えることができる。
論文 参考訳(メタデータ) (2021-12-31T12:05:22Z) - An Empirical Investigation of the Role of Pre-training in Lifelong
Learning [21.995593026269578]
複数のタスクを逐次学習する際の破滅的忘れの影響を,ジェネリック事前学習が暗黙的に軽減することを示す。
本研究では、この現象を損失景観を解析し、トレーニング済みの重みがより広いミニマへと導くことで忘れやすいように見えることを明らかにする。
論文 参考訳(メタデータ) (2021-12-16T19:00:55Z) - Reducing Representation Drift in Online Continual Learning [87.71558506591937]
私たちは、エージェントが制限されたメモリと計算で変化する分布から学ぶ必要があるオンライン連続学習パラダイムを研究します。
この作業では、入ってくるデータストリームに未観測のクラスサンプルが導入されることにより、事前に観測されたデータの表現の変化に焦点を合わせます。
論文 参考訳(メタデータ) (2021-04-11T15:19:30Z) - Using Hindsight to Anchor Past Knowledge in Continual Learning [36.271906785418864]
連続学習では、学習者は時間とともに分布が変化するデータのストリームに直面します。
現代のニューラルネットワークは、以前に獲得した知識をすぐに忘れてしまうため、この設定で苦しむことが知られている。
ここでは、学習者が2段階最適化を使用して現在のタスクの知識を更新し、過去のタスクの予測をそのまま維持する。
論文 参考訳(メタデータ) (2020-02-19T13:21:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。