論文の概要: Causally Disentangled Generative Variational AutoEncoder
- arxiv url: http://arxiv.org/abs/2302.11737v1
- Date: Thu, 23 Feb 2023 01:57:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 16:38:48.608438
- Title: Causally Disentangled Generative Variational AutoEncoder
- Title(参考訳): 因果不整形変分オートエンコーダ
- Authors: SeungHwan An, Kyungwoo Song, Jong-June Jeon
- Abstract要約: 変分オートエンコーダ(VAE)の新しい教師付き学習法を提案する。
因果不整合表現を持ち、因果不整合生成(CDG)を同時に達成する。
本稿では、CDGを因果不整合表現に従って出力を正確に復号できる生成モデルとして定義する。
- 参考スコア(独自算出の注目度): 13.36757116306494
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a new supervised learning method for Variational AutoEncoder (VAE)
which has a causally disentangled representation and achieves the causally
disentangled generation (CDG) simultaneously. In this paper, CDG is defined as
a generative model able to decode an output precisely according to the causally
disentangled representation. We found that the supervised regularization of the
encoder is not enough to obtain a generative model with CDG. Consequently, we
explore sufficient and necessary conditions for the decoder and the causal
effect to achieve CDG. Moreover, we propose a generalized metric measuring how
a model is causally disentangled generative. Numerical results with the image
and tabular datasets corroborate our arguments.
- Abstract(参考訳): 本稿では,因果不整合表現と因果不整合生成(CDG)を同時に実現する変分自動エンコーダ(VAE)の新しい教師付き学習手法を提案する。
本稿では,cdgを生成モデルとして,因果的不等角表現に従って出力を正確にデコードできることを示す。
エンコーダの教師付き正規化はcdgによる生成モデルを得るのに十分でないことがわかった。
そこで本研究では,CDGを実現するためのデコーダと因果効果について検討する。
さらに,モデルがどのように因果的不整合生成であるかを測る一般化計量を提案する。
画像と表のデータセットによる数値的な結果が議論を裏付ける。
関連論文リスト
- Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models [17.124075103464392]
拡散モデル(DPM)は高品質の画像生成における最先端技術となっている。
DPMは、解釈可能な意味論や制御可能な意味論を持たない任意の雑音潜在空間を持つ。
本稿では,拡散に基づく因果表現学習フレームワークCausalDiffAEを提案する。
論文 参考訳(メタデータ) (2024-04-27T00:09:26Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries [10.818661865303518]
本稿では,観察的,介入的,反ファクト的クエリに因果的に十分な設定で回答する問題を考察する。
本稿では拡散型因果モデル (DCM) を導入し, 独自の潜伏符号化を生成する因果メカニズムを学習する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-02-02T04:08:08Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANは、実際のトレーニング分布を特定するために、これらのモデルのリッチなコンテキスト情報に依存している。
本稿では,自動エンコーダとGANを組み合わせた新しい教師なしモデルを提案する。
識別器の内部表現と生成器の視覚表現の線形結合と、オートエンコーダの符号化表現とを組み合わせて、提案した異常スコアを定義する。
論文 参考訳(メタデータ) (2021-12-31T16:35:47Z) - P-WAE: Generalized Patch-Wasserstein Autoencoder for Anomaly Screening [17.24628770042803]
Patch-wise Wasserstein AutoEncoder (P-WAE) アーキテクチャを提案する。
特に、ジグソーパズルの解法と結合したパッチワイド変分推論モデルを設計する。
MVTec ADデータセットを用いた総合的な実験は、我々のプロポの優れた性能を実証する。
論文 参考訳(メタデータ) (2021-08-09T05:31:45Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
generative adversarial network (gans) は、非凹型ミニマックス最適化問題を訓練するために用いられる。
ある理論は、グローバル最適解に対する勾配降下 (gd) の重要性を示している。
ニューラルネットワークジェネレータと線形判別器を併用した多層GANにおいて、GDAは、基礎となる非凹面min-max問題の大域的なサドル点に収束することを示す。
論文 参考訳(メタデータ) (2021-04-12T16:23:37Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。