論文の概要: Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries
- arxiv url: http://arxiv.org/abs/2302.00860v3
- Date: Wed, 09 Oct 2024 18:04:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:03.741364
- Title: Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries
- Title(参考訳): インターベンショナルおよび非現実的クエリのための拡散モデルを用いた因果メカニズムのモデル化
- Authors: Patrick Chao, Patrick Blöbaum, Sapan Patel, Shiva Prasad Kasiviswanathan,
- Abstract要約: 本稿では,観察的,介入的,反ファクト的クエリに因果的に十分な設定で回答する問題を考察する。
本稿では拡散型因果モデル (DCM) を導入し, 独自の潜伏符号化を生成する因果メカニズムを学習する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
- 参考スコア(独自算出の注目度): 10.818661865303518
- License:
- Abstract: We consider the problem of answering observational, interventional, and counterfactual queries in a causally sufficient setting where only observational data and the causal graph are available. Utilizing the recent developments in diffusion models, we introduce diffusion-based causal models (DCM) to learn causal mechanisms, that generate unique latent encodings. These encodings enable us to directly sample under interventions and perform abduction for counterfactuals. Diffusion models are a natural fit here, since they can encode each node to a latent representation that acts as a proxy for exogenous noise. Our empirical evaluations demonstrate significant improvements over existing state-of-the-art methods for answering causal queries. Furthermore, we provide theoretical results that offer a methodology for analyzing counterfactual estimation in general encoder-decoder models, which could be useful in settings beyond our proposed approach.
- Abstract(参考訳): 本稿では、観測データと因果グラフのみを利用できる因果的に十分な設定で、観察的、介入的、および反事実的クエリに応答する問題を考察する。
近年の拡散モデルの発展を生かして,拡散型因果モデル(DCM)を導入し,独自の潜伏符号化を生成する因果メカニズムを学習する。
これらのエンコーディングにより、介入下で直接サンプルを採取し、偽造品の誘拐を行うことができる。
拡散モデルは、各ノードを外生ノイズのプロキシとして機能する潜在表現にエンコードできるため、ここでは自然に適合する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
さらに,提案手法以外の設定において有用である一般エンコーダ・デコーダモデルにおいて,反事実推定を解析するための方法論を提供する理論的結果を提供する。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models [17.124075103464392]
拡散モデル(DPM)は高品質の画像生成における最先端技術となっている。
DPMは、解釈可能な意味論や制御可能な意味論を持たない任意の雑音潜在空間を持つ。
本稿では,拡散に基づく因果表現学習フレームワークCausalDiffAEを提案する。
論文 参考訳(メタデータ) (2024-04-27T00:09:26Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
本研究では,異なるドメインで生成された場合,サンプルがどのようなものであったのかを仮定した,ドメイン反事実と呼ばれる特定のタイプの因果クエリを解析する。
本研究では, 潜在構造因果モデル (SCM) の回復は, ドメイン・デファクト・デファクトを推定するために不要であることを示す。
また、モデル生成過程を単純化し、生成モデル推定を行うための理論的基盤となる実用的なアルゴリズムも開発する。
論文 参考訳(メタデータ) (2023-06-20T04:19:06Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。