論文の概要: VLSP 2022 -- EVJVQA Challenge: Multilingual Visual Question Answering
- arxiv url: http://arxiv.org/abs/2302.11752v1
- Date: Thu, 23 Feb 2023 02:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 16:28:59.709225
- Title: VLSP 2022 -- EVJVQA Challenge: Multilingual Visual Question Answering
- Title(参考訳): VLSP 2022 -- EVJVQAチャレンジ:多言語視覚質問応答
- Authors: Ngan Luu-Thuy Nguyen, Nghia Hieu Nguyen, Duong T.D Vo, Khanh Quoc
Tran, Kiet Van Nguyen
- Abstract要約: 本稿では,課題の組織化,共有タスク参加者の実施方法の概要,その結果について述べる。
VQA(Visual Question Answering)は自然言語処理(NLP)とコンピュータビジョン(CV)の課題である。
ベトナム語、英語、日本語の3言語で33,000以上の質問応答を含むEVJVQAというベンチマークデータセットを提供する。
- 参考スコア(独自算出の注目度): 2.5199066832791535
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Visual Question Answering (VQA) is a challenging task of natural language
processing (NLP) and computer vision (CV), attracting significant attention
from researchers. English is a resource-rich language that has witnessed
various developments in datasets and models for visual question answering.
Visual question answering in other languages also would be developed for
resources and models. In addition, there is no multilingual dataset targeting
the visual content of a particular country with its own objects and cultural
characteristics. To address the weakness, we provide the research community
with a benchmark dataset named EVJVQA, including 33,000+ pairs of
question-answer over three languages: Vietnamese, English, and Japanese, on
approximately 5,000 images taken from Vietnam for evaluating multilingual VQA
systems or models. EVJVQA is used as a benchmark dataset for the challenge of
multilingual visual question answering at the 9th Workshop on Vietnamese
Language and Speech Processing (VLSP 2022). This task attracted 62 participant
teams from various universities and organizations. In this article, we present
details of the organization of the challenge, an overview of the methods
employed by shared-task participants, and the results. The highest performances
are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The
multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained
vision model and mT5 for the pre-trained language model, a powerful pre-trained
language model based on the transformer architecture. EVJVQA is a challenging
dataset that motivates NLP and CV researchers to further explore the
multilingual models or systems for visual question answering systems.
- Abstract(参考訳): VQA(Visual Question Answering)は自然言語処理(NLP)とコンピュータビジョン(CV)の課題であり、研究者から大きな注目を集めている。
英語はリソースに富む言語であり、視覚的な質問応答のためのデータセットやモデルで様々な発展を目撃してきた。
他の言語での視覚的な質問応答も、リソースやモデルのために開発される。
加えて、独自の対象と文化的特徴を持つ、特定の国の視覚コンテンツをターゲットにした多言語データセットは存在しない。
ベトナム語、英語、日本語の3つの言語に対する33,000組以上の質問応答を含む、多言語vqaシステムやモデルを評価するためにベトナムから撮影された約5,000枚の画像を含む、研究コミュニティにevjvqaというベンチマークデータセットを提供する。
EVJVQAはベトナム語と音声処理に関する第9回ワークショップ(VLSP 2022)で、多言語視覚質問応答の課題に対するベンチマークデータセットとして使用されている。
この作業は、様々な大学や組織から62の参加者を惹きつけた。
本稿では,課題の組織の詳細,共有タスク参加者が採用する手法の概要,その結果について述べる。
最高パフォーマンスはF1スコアの0.4392、プライベートテストセットのBLUEの0.4009である。
トップ2チームが提案した多言語QAシステムは、事前訓練された視覚モデルにViT、事前訓練された言語モデルにmT5を使用している。
EVJVQAは、NLPとCV研究者が視覚的質問応答システムのための多言語モデルやシステムをさらに探求するために、難しいデータセットである。
関連論文リスト
- WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines [74.25764182510295]
視覚言語モデル(VLM)は、特に英語以外の言語において、文化特有の知識に苦しむことが多い。
我々は多言語および多文化の視覚的理解のための大規模ベンチマークであるWorld Cuisinesを紹介した。
このベンチマークには、30の言語と方言にまたがるテキストイメージペアを備えた、視覚的質問応答(VQA)データセットが含まれている。
論文 参考訳(メタデータ) (2024-10-16T16:11:49Z) - CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark [68.21939124278065]
言語と文化の豊富なセットをカバーするために設計された、文化的に多言語なビジュアル質問回答ベンチマーク。
CVQAには文化的に駆動されたイメージと、4大陸30カ国の質問が含まれ、31の言語と13のスクリプトをカバーし、合計10万の質問を提供する。
CVQA上で複数のマルチモーダル大言語モデル (MLLM) をベンチマークし、現在の最先端モデルではデータセットが困難であることを示す。
論文 参考訳(メタデータ) (2024-06-10T01:59:00Z) - MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering [58.92057773071854]
MTVQAは、9つの異なる言語にまたがる高品質なヒューマンエキスパートアノテーションを特徴とする最初のベンチマークである。
MTVQAは9つの異なる言語にわたる高品質なヒューマンエキスパートアノテーションを特徴とする最初のベンチマークである。
論文 参考訳(メタデータ) (2024-05-20T12:35:01Z) - Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
我々は,Multiple-choice Question answering (MCQA)のために設計されたBandarkar et al.(Bandarkar et al., 2023)を再利用した。
本稿では,英語と現代標準アラビア語(MSA)のためのガイドラインと並列EQAデータセットを提案する。
私たちの目標は、ベレベレにおける120以上の言語変異に対して、他者が私たちのアプローチを適応できるようにすることです。
論文 参考訳(メタデータ) (2024-04-26T11:46:05Z) - ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
for Visual Question Answering in Vietnamese [1.6340299456362617]
ベトナムにおける様々な視覚的推論能力を評価するための先駆的な収集であるViCLEVRデータセットを紹介した。
我々は、現代の視覚的推論システムの包括的な分析を行い、その強みと限界についての貴重な洞察を提供する。
PhoVITは、質問に基づいて画像中のオブジェクトを識別する総合的なマルチモーダル融合である。
論文 参考訳(メタデータ) (2023-10-27T10:44:50Z) - HaVQA: A Dataset for Visual Question Answering and Multimodal Research
in Hausa Language [1.3476084087665703]
HaVQAは、Hausa言語における視覚的質問応答タスクのための最初のマルチモーダルデータセットである。
データセットは、6,022の英問合せペアを手動で翻訳することで作成され、Visual Genomeデータセットから1,555のユニークな画像に関連付けられている。
論文 参考訳(メタデータ) (2023-05-28T10:55:31Z) - OpenViVQA: Task, Dataset, and Multimodal Fusion Models for Visual
Question Answering in Vietnamese [2.7528170226206443]
ベトナム初の視覚的質問応答のための大規模データセットであるOpenViVQAデータセットを紹介する。
データセットは37,000以上の質問応答ペア(QA)に関連付けられた11,000以上の画像で構成されている。
提案手法は,SAAA,MCAN,LORA,M4CなどのSOTAモデルと競合する結果が得られる。
論文 参考訳(メタデータ) (2023-05-07T03:59:31Z) - From Easy to Hard: Learning Language-guided Curriculum for Visual
Question Answering on Remote Sensing Data [27.160303686163164]
リモートセンシングシーンに対する視覚的質問応答(VQA)は、インテリジェントな人-コンピュータインタラクションシステムにおいて大きな可能性を秘めている。
RSVQAデータセットにはオブジェクトアノテーションがないため、モデルが情報的領域表現を活用できない。
RSVQAタスクでは、各画像の難易度が明らかに異なる。
言語誘導の全体的特徴と地域的特徴を共同で抽出する多段階視覚特徴学習法を提案する。
論文 参考訳(メタデータ) (2022-05-06T11:37:00Z) - Delving Deeper into Cross-lingual Visual Question Answering [115.16614806717341]
標準学習装置に簡単な修正を加えることで、モノリンガル英語のパフォーマンスへの移行ギャップを大幅に減らすことができることを示す。
多言語マルチモーダル変換器の多言語間VQAを多言語間VQAで解析する。
論文 参考訳(メタデータ) (2022-02-15T18:22:18Z) - Multilingual Answer Sentence Reranking via Automatically Translated Data [97.98885151955467]
本稿では,現代の質問応答システム(QA)のコアコンポーネントである,多言語回答文選択(AS2)モデルの設計について述べる。
主なアイデアは、あるリソースリッチ言語(英語など)から、他の言語へのデータ転送であり、リソースの観点からはよりリッチである。
論文 参考訳(メタデータ) (2021-02-20T03:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。