論文の概要: Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model
- arxiv url: http://arxiv.org/abs/2501.05122v1
- Date: Thu, 09 Jan 2025 10:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:37.151052
- Title: Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model
- Title(参考訳): センチュリオ:大規模視覚言語モデルの多言語能力のドライバについて
- Authors: Gregor Geigle, Florian Schneider, Carolin Holtermann, Chris Biemann, Radu Timofte, Anne Lauscher, Goran Glavaš,
- Abstract要約: 多くのLVLM(Large Vision-Language Models)は、主に英語のデータに基づいて訓練されている。
異なる言語群に対する学習がいかに異なるかを検討する。
私たちはCenturio(100言語LVLM)をトレーニングし、14のタスクと56の言語を対象とした評価で最先端のパフォーマンスを提供する。
- 参考スコア(独自算出の注目度): 66.17354128553244
- License:
- Abstract: Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data, which makes them struggle to understand non-English input and fail to generate output in the desired target language. Existing efforts mitigate these issues by adding multilingual training data, but do so in a largely ad-hoc manner, lacking insight into how different training mixes tip the scale for different groups of languages. In this work, we present a comprehensive investigation into the training strategies for massively multilingual LVLMs. First, we conduct a series of multi-stage experiments spanning 13 downstream vision-language tasks and 43 languages, systematically examining: (1) the number of training languages that can be included without degrading English performance and (2) optimal language distributions of pre-training as well as (3) instruction-tuning data. Further, we (4) investigate how to improve multilingual text-in-image understanding, and introduce a new benchmark for the task. Surprisingly, our analysis reveals that one can (i) include as many as 100 training languages simultaneously (ii) with as little as 25-50\% of non-English data, to greatly improve multilingual performance while retaining strong English performance. We further find that (iii) including non-English OCR data in pre-training and instruction-tuning is paramount for improving multilingual text-in-image understanding. Finally, we put all our findings together and train Centurio, a 100-language LVLM, offering state-of-the-art performance in an evaluation covering 14 tasks and 56 languages.
- Abstract(参考訳): 多くのLVLM(Large Vision-Language Model)は、英語のデータに基づいて主に訓練されており、非英語入力を理解するのに苦労し、所望のターゲット言語で出力を生成するのに失敗する。
既存の取り組みは、マルチリンガルなトレーニングデータを追加することでこれらの問題を緩和しますが、そのほとんどがアドホックな方法で行います。
本研究では,多言語LVLMの学習戦略を総合的に検討する。
まず、まず、13の下流視覚言語タスクと43の言語にまたがる多段階的な実験を行い、(1)英語のパフォーマンスを低下させることなく含められる訓練言語の数、(2)事前学習の最適な言語分布、(3)指導訓練データについて系統的に検討する。
さらに,マルチリンガル・テキスト・イン・イメージの理解を改善する方法について検討し,タスクのための新しいベンチマークを導入する。
意外なことに、我々の分析からわかるのは、誰でもできるということだ。
(i)同時に100の訓練言語を含む
(i) 英語以外のデータの25~50%を少なくして、英語のパフォーマンスを維持しつつ、多言語のパフォーマンスを大幅に向上させる。
私たちはさらにそれを発見します。
3) 事前学習や指導訓練において, 英語以外のOCRデータを含めることが, 多言語テキスト・イン・イメージ理解の向上に最重要である。
最後に、すべての知見をまとめて、Centurio(100言語LVLM)をトレーニングし、14のタスクと56の言語を対象とした評価で最先端のパフォーマンスを提供する。
関連論文リスト
- EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models [50.459861376459656]
EMMA-500は546言語にわたるテキストで継続訓練された大規模多言語言語モデルである。
本結果は,大規模言語モデルの言語能力拡大における継続事前学習の有効性を強調した。
論文 参考訳(メタデータ) (2024-09-26T14:40:45Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? [40.13166574854085]
英語中心の大規模言語モデルにおいて,多言語間の一般化を実現するために必要な最小限の多言語性について検討する。
複数言語から3言語までの多言語命令チューニングは,効果的な言語間一般化を実現するのに必要かつ十分であることがわかった。
論文 参考訳(メタデータ) (2023-12-20T00:49:52Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Improved Self-Supervised Multilingual Speech Representation Learning
Combined with Auxiliary Language Information [21.250763472985824]
自己教師型多言語音声表現学習は,多言語自動音声認識の性能向上に成功している。
しかし、教師付き学習と同様、多言語事前学習も言語干渉に悩まされる可能性がある。
本稿では,補助言語情報を活用することで,自己教師付き多言語事前学習を改善するためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2022-12-07T06:18:59Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。