PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles
- URL: http://arxiv.org/abs/2302.11919v2
- Date: Tue, 27 Feb 2024 09:47:33 GMT
- Title: PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles
- Authors: Andrea Piazzoni, Jim Cherian, Justin Dauwels, Lap-Pui Chau
- Abstract summary: We define Perception Error Models (PEM) in this article.
PEM is a virtual simulation component that can enable the analysis of the impact of perception errors on AV safety.
We demonstrate the usefulness of PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups.
- Score: 20.300846259643137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though virtual testing of Autonomous Vehicles (AVs) has been well
recognized as essential for safety assessment, AV simulators are still
undergoing active development. One particularly challenging question is to
effectively include the Sensing and Perception (S&P) subsystem into the
simulation loop. In this article, we define Perception Error Models (PEM), a
virtual simulation component that can enable the analysis of the impact of
perception errors on AV safety, without the need to model the sensors
themselves. We propose a generalized data-driven procedure towards parametric
modeling and evaluate it using Apollo, an open-source driving software, and
nuScenes, a public AV dataset. Additionally, we implement PEMs in SVL, an
open-source vehicle simulator. Furthermore, we demonstrate the usefulness of
PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups.
Our virtual tests highlight limitations in the current evaluation metrics, and
the proposed approach can help study the impact of perception errors on AV
safety.
Related papers
- DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
We present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle.
UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene.
We incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions.
arXiv Detail & Related papers (2023-08-03T17:56:06Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - A Multi-Layered Approach for Measuring the Simulation-to-Reality Gap of
Radar Perception for Autonomous Driving [0.0]
In order to rely on virtual tests the employed sensor models have to be validated.
There exists no sound method to measure this simulation-to-reality gap of radar perception.
We have shown the effectiveness of the proposed approach in terms of providing an in-depth sensor model assessment.
arXiv Detail & Related papers (2021-06-15T18:51:39Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Reliability Analysis of Artificial Intelligence Systems Using Recurrent
Events Data from Autonomous Vehicles [2.7515565752659645]
We use recurrent disengagement events as a representation of the reliability of the AI system in autonomous vehicles.
We propose a new nonparametric model based on monotonic splines to describe the event process.
arXiv Detail & Related papers (2021-02-02T20:25:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - A Sensitivity Analysis Approach for Evaluating a Radar Simulation for
Virtual Testing of Autonomous Driving Functions [0.0]
We introduce a sensitivity analysis approach for developing and evaluating a radar simulation.
A modular radar system simulation is presented and parameterized to conduct a sensitivity analysis.
We compare the output from the radar model to real driving measurements to ensure a realistic model behavior.
arXiv Detail & Related papers (2020-08-06T15:51:52Z) - Building Trust in Autonomous Vehicles: Role of Virtual Reality Driving
Simulators in HMI Design [8.39368916644651]
We propose a methodology to validate the user experience in AVs based on continuous, objective information gathered from physiological signals.
We applied this methodology to the design of a head-up display interface delivering visual cues about the vehicle's sensory and planning systems.
arXiv Detail & Related papers (2020-07-27T08:42:07Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
We propose a method for screening and classifying simulation-based driving test data to be used for training and testing controllers.
Our framework is distributed with the publicly available S-TALIRO and Sim-ATAV tools.
arXiv Detail & Related papers (2020-04-25T10:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.