The Generalizability of Explanations
- URL: http://arxiv.org/abs/2302.11965v1
- Date: Thu, 23 Feb 2023 12:25:59 GMT
- Title: The Generalizability of Explanations
- Authors: Hanxiao Tan
- Abstract summary: This work proposes a novel evaluation methodology from the perspective of generalizability.
We employ an Autoencoder to learn the distributions of the generated explanations and observe their learnability as well as the plausibility of the learned distributional features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the absence of ground truth, objective evaluation of explainability
methods is an essential research direction. So far, the vast majority of
evaluations can be summarized into three categories, namely human evaluation,
sensitivity testing, and salinity check. This work proposes a novel evaluation
methodology from the perspective of generalizability. We employ an Autoencoder
to learn the distributions of the generated explanations and observe their
learnability as well as the plausibility of the learned distributional
features. We first briefly demonstrate the evaluation idea of the proposed
approach at LIME, and then quantitatively evaluate multiple popular
explainability methods. We also find that smoothing the explanations with
SmoothGrad can significantly enhance the generalizability of explanations.
Related papers
- Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - On The Coherence of Quantitative Evaluation of Visual Explanations [0.7212939068975619]
Evaluation methods have been proposed to assess the "goodness" of visual explanations.
We study a subset of the ImageNet-1k validation set where we evaluate a number of different commonly-used explanation methods.
Results of our study suggest that there is a lack of coherency on the grading provided by some of the considered evaluation methods.
arXiv Detail & Related papers (2023-02-14T13:41:57Z) - From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic
Review on Evaluating Explainable AI [3.7592122147132776]
We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation.
We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users.
This systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods.
arXiv Detail & Related papers (2022-01-20T13:23:20Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness,
and Semantic Evaluation [23.72825603188359]
We can improve the interpretability of explanations by allowing arbitrary text sequences as the explanation unit.
We propose a semantic-based evaluation metric that can better align with humans' judgment of explanations.
arXiv Detail & Related papers (2021-06-09T00:49:56Z) - Evaluating Explanations: How much do explanations from the teacher aid
students? [103.05037537415811]
We formalize the value of explanations using a student-teacher paradigm that measures the extent to which explanations improve student models in learning.
Unlike many prior proposals to evaluate explanations, our approach cannot be easily gamed, enabling principled, scalable, and automatic evaluation of attributions.
arXiv Detail & Related papers (2020-12-01T23:40:21Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.