Knowledge Distillation-based Information Sharing for Online Process
Monitoring in Decentralized Manufacturing System
- URL: http://arxiv.org/abs/2302.12004v2
- Date: Tue, 25 Jul 2023 22:11:24 GMT
- Title: Knowledge Distillation-based Information Sharing for Online Process
Monitoring in Decentralized Manufacturing System
- Authors: Zhangyue Shi, Yuxuan Li, Chenang Liu
- Abstract summary: In advanced manufacturing, the incorporation of sensing technology provides an opportunity to achieve efficient in-situ process monitoring.
In a decentralized manufacturing system, the involved units may fabricate same or similar products and deploy their own machine learning model for online process monitoring.
This paper proposes a novel knowledge distillation-based information sharing framework, which could distill informative knowledge from well performed models.
- Score: 2.742441483588685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In advanced manufacturing, the incorporation of sensing technology provides
an opportunity to achieve efficient in-situ process monitoring using machine
learning methods. Meanwhile, the advances of information technologies also
enable a connected and decentralized environment for manufacturing systems,
making different manufacturing units in the system collaborate more closely. In
a decentralized manufacturing system, the involved units may fabricate same or
similar products and deploy their own machine learning model for online process
monitoring. However, due to the possible inconsistency of task progress during
the operation, it is also common that some units have more informative data
while some have less informative data. Thus, the monitoring performance of
machine learning model for each unit may highly vary. Therefore, it is
extremely valuable to achieve efficient and secured knowledge sharing among the
units in a decentralized manufacturing system for enhancement of poorly
performed models. To realize this goal, this paper proposes a novel knowledge
distillation-based information sharing (KD-IS) framework, which could distill
informative knowledge from well performed models to improve the monitoring
performance of poorly performed models. To validate the effectiveness of this
method, a real-world case study is conducted in a connected fused filament
fabrication (FFF)-based additive manufacturing (AM) platform. The experimental
results show that the developed method is very efficient in improving model
monitoring performance at poorly performed models, with solid protection on
potential data privacy.
Related papers
- Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring [0.0]
This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes.
We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data.
Our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance.
arXiv Detail & Related papers (2024-10-29T21:52:04Z) - When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
Machine learning models offer the capability to forecast future energy production or consumption.
However, legal and policy constraints within specific energy sectors present technical hurdles in utilizing data from diverse sources.
We propose adopting a Swarm Learning scheme, which replaces the centralized server with a blockchain-based distributed network.
arXiv Detail & Related papers (2024-06-07T08:42:26Z) - Automating the Training and Deployment of Models in MLOps by Integrating Systems with Machine Learning [5.565764053895849]
Article introduces the importance of machine learning in real-world applications and explores the rise of MLOps (Machine Learning Operations)
By reviewing the evolution of MLOps and its relationship to traditional software development methods, the paper proposes ways to integrate the system into machine learning to solve the problems faced by existing MLOps and improve productivity.
arXiv Detail & Related papers (2024-05-16T05:36:28Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - A Systematic Review of Available Datasets in Additive Manufacturing [56.684125592242445]
In-situ monitoring incorporating visual and other sensor technologies allows the collection of extensive datasets during the Additive Manufacturing process.
These datasets have potential for determining the quality of the manufactured output and the detection of defects through the use of Machine Learning.
This systematic review investigates the availability of open image-based datasets originating from AM processes that align with a number of pre-defined selection criteria.
arXiv Detail & Related papers (2024-01-27T16:13:32Z) - Reinforcement Learning of Display Transfer Robots in Glass Flow Control
Systems: A Physical Simulation-Based Approach [6.229216953398305]
A flow control system is a critical concept for increasing the production capacity of manufacturing systems.
To solve the scheduling optimization problem related to the flow control, existing methods depend on a design by domain human experts.
We propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing.
arXiv Detail & Related papers (2023-10-12T02:10:29Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - On the Orthogonality of Knowledge Distillation with Other Techniques:
From an Ensemble Perspective [34.494730096460636]
We show that knowledge distillation is a powerful apparatus for practical deployment of efficient neural network.
We also introduce ways to integrate knowledge distillation with other methods effectively.
arXiv Detail & Related papers (2020-09-09T06:14:59Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.