A Systematic Review of Available Datasets in Additive Manufacturing
- URL: http://arxiv.org/abs/2401.15448v1
- Date: Sat, 27 Jan 2024 16:13:32 GMT
- Title: A Systematic Review of Available Datasets in Additive Manufacturing
- Authors: Xiao Liu and Alessandra Mileo and Alan F. Smeaton
- Abstract summary: In-situ monitoring incorporating visual and other sensor technologies allows the collection of extensive datasets during the Additive Manufacturing process.
These datasets have potential for determining the quality of the manufactured output and the detection of defects through the use of Machine Learning.
This systematic review investigates the availability of open image-based datasets originating from AM processes that align with a number of pre-defined selection criteria.
- Score: 56.684125592242445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-situ monitoring incorporating data from visual and other sensor
technologies, allows the collection of extensive datasets during the Additive
Manufacturing (AM) process. These datasets have potential for determining the
quality of the manufactured output and the detection of defects through the use
of Machine Learning during the manufacturing process. Open and annotated
datasets derived from AM processes are necessary for the machine learning
community to address this opportunity, which creates difficulties in the
application of computer vision-related machine learning in AM. This systematic
review investigates the availability of open image-based datasets originating
from AM processes that align with a number of pre-defined selection criteria.
The review identifies existing gaps among the current image-based datasets in
the domain of AM, and points to the need for greater availability of open
datasets in order to allow quality assessment and defect detection during
additive manufacturing, to develop.
Related papers
- Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring [0.0]
This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes.
We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data.
Our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance.
arXiv Detail & Related papers (2024-10-29T21:52:04Z) - A PRISMA Driven Systematic Review of Publicly Available Datasets for Benchmark and Model Developments for Industrial Defect Detection [0.0]
A critical barrier to progress is the scarcity of comprehensive datasets featuring annotated defects.
This systematic review, spanning from 2015 to 2023, identifies 15 publicly available datasets.
The goal of this systematic review is to consolidate these datasets in a single location, providing researchers with a comprehensive reference.
arXiv Detail & Related papers (2024-06-11T20:14:59Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets.
We then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers.
Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in Machine Learning.
arXiv Detail & Related papers (2023-11-22T22:15:17Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) allows the collection of large amounts of emission data.
This data can be used as input into 3D and 2D representations of the 3D-printed parts.
The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques.
arXiv Detail & Related papers (2022-12-12T15:11:18Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Data Curation and Quality Assurance for Machine Learning-based Cyber
Intrusion Detection [1.0276024900942873]
This article first summarizes existing machine learning-based intrusion detection systems and the datasets used for building these systems.
The experimental results show that BERT and GPT were the best algorithms for HIDS on all of the datasets.
We then evaluate the data quality of the 11 datasets based on quality dimensions proposed in this paper to determine the best characteristics that a HIDS dataset should possess in order to yield the best possible result.
arXiv Detail & Related papers (2021-05-20T21:31:46Z) - Ensuring Dataset Quality for Machine Learning Certification [0.6927055673104934]
We show that the specificities of the Machine Learning context are neither properly captured nor taken into ac-count.
We propose a dataset specification and verification process, and apply it on a signal recognition system from the railway domain.
arXiv Detail & Related papers (2020-11-03T15:45:43Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.