論文の概要: MCWDST: a Minimum-Cost Weighted Directed Spanning Tree Algorithm for
Real-Time Fake News Mitigation in Social Media
- arxiv url: http://arxiv.org/abs/2302.12190v2
- Date: Fri, 19 Jan 2024 16:30:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 19:42:09.387690
- Title: MCWDST: a Minimum-Cost Weighted Directed Spanning Tree Algorithm for
Real-Time Fake News Mitigation in Social Media
- Title(参考訳): mcwdst:ソーシャルメディアにおけるリアルタイム偽ニュース除去のための最小コスト重み付き有向スパンディングツリーアルゴリズム
- Authors: Ciprian-Octavian Truic\u{a} and Elena-Simona Apostol and
Radu-C\u{a}t\u{a}lin Nicolescu and Panagiotis Karras
- Abstract要約: 本稿では,フェイクニュースを正確に検出し,リアルタイムに拡散するネットワークノードを免疫するエンドツーエンドソリューションを提案する。
フェイクニュースの拡散を軽減するため,リアルタイムなネットワーク認識戦略を提案する。
- 参考スコア(独自算出の注目度): 10.088200477738749
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread availability of internet access and handheld devices confers
to social media a power similar to the one newspapers used to have. People seek
affordable information on social media and can reach it within seconds. Yet
this convenience comes with dangers; any user may freely post whatever they
please and the content can stay online for a long period, regardless of its
truthfulness. A need to detect untruthful information, also known as fake news,
arises. In this paper, we present an end-to-end solution that accurately
detects fake news and immunizes network nodes that spread them in real-time. To
detect fake news, we propose two new stack deep learning architectures that
utilize convolutional and bidirectional LSTM layers. To mitigate the spread of
fake news, we propose a real-time network-aware strategy that (1) constructs a
minimum-cost weighted directed spanning tree for a detected node, and (2)
immunizes nodes in that tree by scoring their harmfulness using a novel ranking
function. We demonstrate the effectiveness of our solution on five real-world
datasets.
- Abstract(参考訳): インターネットアクセスとハンドヘルドデバイスの普及により、ソーシャルメディアはかつての新聞とよく似た力を持つようになった。
人々はソーシャルメディアで手頃な情報を探し、それを数秒で手に入れることができる。
しかし、この利便性には危険が伴う。ユーザーは自由に好きなものを投稿でき、コンテンツはその真実性に関わらず、長期間オンラインに留まることができる。
偽ニュースとしても知られる不正な情報を検出する必要性が生じる。
本稿では,フェイクニュースを正確に検出し,リアルタイムに拡散するネットワークノードを免疫するエンドツーエンドソリューションを提案する。
フェイクニュースを検出するために,畳み込み層と双方向LSTM層を利用する2つの新しいスタックディープラーニングアーキテクチャを提案する。
偽ニュースの拡散を緩和するため,(1)検出ノードに対する最小コストの重み付き有向木を構築するリアルタイムネットワーク認識戦略を提案し,(2)新しいランキング関数を用いて有害性を評価して,その木内のノードを免疫する。
実世界の5つのデータセットにソリューションの有効性を示す。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - FALSE: Fake News Automatic and Lightweight Solution [0.20999222360659603]
本稿では,現代のフェイクニュースデータセットの研究と可視化にR符号を用いた。
クラスタリング、分類、相関、およびさまざまなプロットを使用してデータを分析し、提示する。
論文 参考訳(メタデータ) (2022-08-16T11:53:30Z) - Fake News Quick Detection on Dynamic Heterogeneous Information Networks [3.599616699656401]
偽ニュース検出のための新しい動的不均一グラフニューラルネットワーク(DHGNN)を提案する。
我々はまず、ニュース記事の内容と著者プロファイルのセマンティック表現を得るために、BERTと微調整BERTを実装した。
そして、文脈情報と関係を反映した異質なニュース著者グラフを構築する。
論文 参考訳(メタデータ) (2022-05-14T11:23:25Z) - Fake News Detection Tools and Methods -- A Review [0.0]
インターネット上で偽ニュースを検出するための様々なアプローチについて,近年の文献について論じる。
公開されているさまざまなデータセットと、利用可能なさまざまなオンラインツールを強調し、Fake Newsをリアルタイムでデバンクすることができる。
論文 参考訳(メタデータ) (2021-11-21T13:19:23Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread? [5.64512235559998]
ソーシャルネットワークの完全解釈と使いやすさは、今日の世界での情報の生成と配布に革命をもたらした。
従来のメディアチャンネルとは異なり、ソーシャルネットワークは偽情報や偽情報の拡散を迅速かつ広範囲に促進する。
虚偽情報の拡散は、大衆の行動、態度、信念に深刻な影響を及ぼす。
論文 参考訳(メタデータ) (2021-05-22T09:26:13Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。