論文の概要: SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread?
- arxiv url: http://arxiv.org/abs/2105.10671v1
- Date: Sat, 22 May 2021 09:26:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 09:11:33.932060
- Title: SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread?
- Title(参考訳): 2021年のフェイクニュース:ウイルスの拡散は止められるか?
- Authors: Tanveer Khan, Antonis Michalas, Adnan Akhunzada
- Abstract要約: ソーシャルネットワークの完全解釈と使いやすさは、今日の世界での情報の生成と配布に革命をもたらした。
従来のメディアチャンネルとは異なり、ソーシャルネットワークは偽情報や偽情報の拡散を迅速かつ広範囲に促進する。
虚偽情報の拡散は、大衆の行動、態度、信念に深刻な影響を及ぼす。
- 参考スコア(独自算出の注目度): 5.64512235559998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social Networks' omnipresence and ease of use has revolutionized the
generation and distribution of information in today's world. However, easy
access to information does not equal an increased level of public knowledge.
Unlike traditional media channels, social networks also facilitate faster and
wider spread of disinformation and misinformation. Viral spread of false
information has serious implications on the behaviors, attitudes and beliefs of
the public, and ultimately can seriously endanger the democratic processes.
Limiting false information's negative impact through early detection and
control of extensive spread presents the main challenge facing researchers
today. In this survey paper, we extensively analyze a wide range of different
solutions for the early detection of fake news in the existing literature. More
precisely, we examine Machine Learning (ML) models for the identification and
classification of fake news, online fake news detection competitions,
statistical outputs as well as the advantages and disadvantages of some of the
available data sets. Finally, we evaluate the online web browsing tools
available for detecting and mitigating fake news and present some open research
challenges.
- Abstract(参考訳): ソーシャルネットワークの全能性と使いやすさは、今日の世界の情報の生成と流通に革命をもたらした。
しかし、情報への容易なアクセスは、公共知識の増加と同等ではない。
従来のメディアチャネルとは異なり、ソーシャルネットワークは偽情報や誤情報の迅速かつ広範な拡散を促進する。
虚偽情報の拡散は、大衆の行動、態度、信念に深刻な影響を及ぼし、究極的には民主主義の過程を脅かす可能性がある。
偽情報の早期検出と広範囲な拡散の制御によるネガティブな影響を制限することは、今日研究者が直面する大きな課題である。
本稿では,既存文献におけるフェイクニュースの早期発見のための様々な手法を幅広く分析する。
より正確には、フェイクニュースの識別と分類のための機械学習(ml)モデル、オンラインフェイクニュース検出コンペティション、統計的アウトプット、利用可能なデータセットのいくつかの利点とデメリットについて検討する。
最後に,偽ニュースの検出と緩和に利用可能なオンラインwebブラウジングツールを評価し,公開研究課題を提示する。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Debunking Disinformation: Revolutionizing Truth with NLP in Fake News
Detection [7.732570307576947]
インターネットとソーシャルメディアは、即時情報配信の時代において、個人がニュースにアクセスする方法を変えてきた。
フェイクニュースはデジタルプラットフォームに急速に広がり、メディアエコシステムに悪影響を及ぼしている。
自然言語処理は、偽情報との戦いの激化において強力な武器として登場した。
論文 参考訳(メタデータ) (2023-08-30T21:25:31Z) - Fake News Detection Through Graph-based Neural Networks: A Survey [18.70577400440486]
低品質や故意に偽の情報をオンラインで急速に広めることができる。
オンラインの誤報をできるだけ早く特定し、公表することは、ますます緊急の課題になりつつある。
本稿では,グラフベースおよび深層学習に基づくフェイクニュース検出研究の体系的レビューを行う。
論文 参考訳(メタデータ) (2023-07-24T09:30:30Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Combining Machine Learning with Knowledge Engineering to detect Fake
News in Social Networks-a survey [0.7120858995754653]
ニュースメディアやソーシャルメディアでは、情報は高速に拡散されるが、正確性がないため、検出メカニズムは偽ニュースの拡散に対処するのに十分な速さでニュースを予測することができる。
本稿では,フェイクニュースとは何か,フェイクニュースの重要性,さまざまな領域におけるフェイクニュースの全体的影響,ソーシャルメディア上でフェイクニュースを検出するさまざまな方法,問題を克服する上で有効な既存の検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-20T07:43:15Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
本稿では,記事の内容とともに,その特徴の1つとして姿勢を用いた偽ニュースを検出するモデルを提案する。
本研究は,自動的特徴抽出とテキストの関連性でコンテンツを解釈する。
実世界のデータセットで行った実験は、我々のモデルが以前の研究より優れており、95.32%の精度で偽ニュースの検出を可能にすることを示している。
論文 参考訳(メタデータ) (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
偽ニュースを含む偽ニュースは 爆発的な成長により グローバルな現象になっています
偽情報や偽ニュースを検知する最近の進歩にもかかわらず、その複雑さ、多様性、多様性、事実チェックやアノテーションのコストが原因で、いまだに自明ではない。
論文 参考訳(メタデータ) (2020-01-02T21:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。