Modeling Molecular Structures with Intrinsic Diffusion Models
- URL: http://arxiv.org/abs/2302.12255v1
- Date: Thu, 23 Feb 2023 03:26:48 GMT
- Title: Modeling Molecular Structures with Intrinsic Diffusion Models
- Authors: Gabriele Corso
- Abstract summary: This thesis proposes Intrinsic Diffusion Modeling.
It combines diffusion generative models with scientific knowledge about the flexibility of biological complexes.
We demonstrate the effectiveness of this approach on two fundamental tasks at the basis of computational chemistry and biology.
- Score: 2.487445341407889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since its foundations, more than one hundred years ago, the field of
structural biology has strived to understand and analyze the properties of
molecules and their interactions by studying the structure that they take in 3D
space. However, a fundamental challenge with this approach has been the dynamic
nature of these particles, which forces us to model not a single but a whole
distribution of structures for every molecular system. This thesis proposes
Intrinsic Diffusion Modeling, a novel approach to this problem based on
combining diffusion generative models with scientific knowledge about the
flexibility of biological complexes. The knowledge of these degrees of freedom
is translated into the definition of a manifold over which the diffusion
process is defined. This manifold significantly reduces the dimensionality and
increases the smoothness of the generation space allowing for significantly
faster and more accurate generative processes. We demonstrate the effectiveness
of this approach on two fundamental tasks at the basis of computational
chemistry and biology: molecular conformer generation and molecular docking. In
both tasks, we construct the first deep learning method to outperform
traditional computational approaches achieving an unprecedented level of
accuracy for scalable programs.
Related papers
- Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - Diffusion-Driven Generative Framework for Molecular Conformation
Prediction [0.66567375919026]
The rapid advancement of machine learning has revolutionized the precision of predictive modeling in this context.
This research introduces a cutting-edge generative framework named method.
Method views atoms as discrete entities and excels in guiding the reversal of diffusion.
arXiv Detail & Related papers (2023-12-22T11:49:39Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
Existing diffusion-based 3D molecule generation methods could suffer from unsatisfactory performances.
Interatomic relations are not in molecules' 3D point cloud representations.
Proposed model significantly outperforms existing methods for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2022-09-13T03:40:18Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
Generative models are an entirely different approach that learn to represent and optimize molecules in a continuous latent space.
We describe deep generative models of three dimensional molecular structures using atomic density grids.
We are also able to sample diverse sets of molecules based on a given input compound to increase the probability of creating valid, drug-like molecules.
arXiv Detail & Related papers (2020-10-17T01:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.