Diffusion-Driven Generative Framework for Molecular Conformation
Prediction
- URL: http://arxiv.org/abs/2401.09451v2
- Date: Sun, 21 Jan 2024 05:42:29 GMT
- Title: Diffusion-Driven Generative Framework for Molecular Conformation
Prediction
- Authors: Bobin Yang, Jie Deng, Zhenghan Chen, Ruoxue Wu
- Abstract summary: The rapid advancement of machine learning has revolutionized the precision of predictive modeling in this context.
This research introduces a cutting-edge generative framework named method.
Method views atoms as discrete entities and excels in guiding the reversal of diffusion.
- Score: 0.66567375919026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of deducing three-dimensional molecular configurations from their
two-dimensional graph representations holds paramount importance in the fields
of computational chemistry and pharmaceutical development. The rapid
advancement of machine learning, particularly within the domain of deep
generative networks, has revolutionized the precision of predictive modeling in
this context. Traditional approaches often adopt a two-step strategy: initially
estimating interatomic distances and subsequently refining the spatial
molecular structure by solving a distance geometry problem. However, this
sequential approach occasionally falls short in accurately capturing the
intricacies of local atomic arrangements, thereby compromising the fidelity of
the resulting structural models. Addressing these limitations, this research
introduces a cutting-edge generative framework named \method{}. This framework
is grounded in the principles of diffusion observed in classical
non-equilibrium thermodynamics. \method{} views atoms as discrete entities and
excels in guiding the reversal of diffusion, transforming a distribution of
stochastic noise back into coherent molecular structures through a process akin
to a Markov chain. This transformation commences with the initial
representation of a molecular graph in an abstract latent space, culminating in
the realization of three-dimensional structures via a sophisticated bilevel
optimization scheme meticulously tailored to meet the specific requirements of
the task. One of the formidable challenges in this modeling endeavor involves
preserving roto-translational invariance to ensure that the generated molecular
conformations adhere to the laws of physics. Extensive experimental evaluations
confirm the efficacy of the proposed \method{} in comparison to
state-of-the-art methods.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Molecular Conformation Generation via Shifting Scores [21.986775283620883]
We propose a novel molecular conformation generation approach driven by the observation that the disintegration of a molecule can be viewed as casting increasing force fields to its composing atoms.
The corresponding generative modeling ensures a feasible inter-atomic distance geometry and exhibits time reversibility.
arXiv Detail & Related papers (2023-09-12T07:39:43Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Modeling Molecular Structures with Intrinsic Diffusion Models [2.487445341407889]
This thesis proposes Intrinsic Diffusion Modeling.
It combines diffusion generative models with scientific knowledge about the flexibility of biological complexes.
We demonstrate the effectiveness of this approach on two fundamental tasks at the basis of computational chemistry and biology.
arXiv Detail & Related papers (2023-02-23T03:26:48Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.