Blind Omnidirectional Image Quality Assessment: Integrating Local
Statistics and Global Semantics
- URL: http://arxiv.org/abs/2302.12393v1
- Date: Fri, 24 Feb 2023 01:47:13 GMT
- Title: Blind Omnidirectional Image Quality Assessment: Integrating Local
Statistics and Global Semantics
- Authors: Wei Zhou and Zhou Wang
- Abstract summary: We propose a blind/no-reference OIQA method named S$2$ that bridges the gap between low-level statistics and high-level semantics of omnidirectional images.
A quality regression along with a weighting process is then followed that maps the extracted quality-aware features to a perceptual quality prediction.
- Score: 14.586878663223832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Omnidirectional image quality assessment (OIQA) aims to predict the
perceptual quality of omnidirectional images that cover the whole
180$\times$360$^{\circ}$ viewing range of the visual environment. Here we
propose a blind/no-reference OIQA method named S$^2$ that bridges the gap
between low-level statistics and high-level semantics of omnidirectional
images. Specifically, statistic and semantic features are extracted in separate
paths from multiple local viewports and the hallucinated global omnidirectional
image, respectively. A quality regression along with a weighting process is
then followed that maps the extracted quality-aware features to a perceptual
quality prediction. Experimental results demonstrate that the proposed S$^2$
method offers highly competitive performance against state-of-the-art methods.
Related papers
- Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
We establish a large-scale AI generated omnidirectional image IQA database named AIGCOIQA2024.
A subjective IQA experiment is conducted to assess human visual preferences from three perspectives.
We conduct a benchmark experiment to evaluate the performance of state-of-the-art IQA models on our database.
arXiv Detail & Related papers (2024-04-01T10:08:23Z) - Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity [55.399230250413986]
We propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) to remove harmful semantic noise features from the upstream task.
Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.
arXiv Detail & Related papers (2023-12-11T06:50:27Z) - Perceptual Quality Assessment of 360$^\circ$ Images Based on Generative
Scanpath Representation [40.00063797833765]
We introduce a unique generative scanpath representation (GSR) for effective quality inference of 360$circ$ images.
GSR aggregates varied perceptual experiences of multi-hypothesis users under a predefined viewing condition.
We then propose an efficient OIQA computational framework by learning the quality maps GSR.
arXiv Detail & Related papers (2023-09-07T04:10:30Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
Blind image quality assessment (BIQA) predicts the human perception of image quality without any reference information.
We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks.
arXiv Detail & Related papers (2023-03-27T07:58:09Z) - ST360IQ: No-Reference Omnidirectional Image Quality Assessment with
Spherical Vision Transformers [17.48330099000856]
We present a method for no-reference 360 image quality assessment.
Our approach predicts the quality of an omnidirectional image correlated with the human-perceived image quality.
arXiv Detail & Related papers (2023-03-13T07:48:46Z) - End-to-end deep multi-score model for No-reference stereoscopic image
quality assessment [6.254148286968409]
We use a deep multi-score Convolutional Neural Network (CNN) to estimate stereoscopic image quality without reference.
Our model has been trained to perform four tasks: First, predict the left view's quality. Second, predict the quality of the left view. Third and fourth, predict the quality of the stereo view and global quality, respectively, with the global score serving as the ultimate quality.
arXiv Detail & Related papers (2022-11-02T16:45:35Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
We propose to model the quality degradation in perceptual space from a statistical distribution perspective.
The quality is measured based upon the Wasserstein distance in the deep feature domain.
The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination.
arXiv Detail & Related papers (2022-08-05T02:46:12Z) - MANIQA: Multi-dimension Attention Network for No-Reference Image Quality
Assessment [18.637040004248796]
No-Reference Image Quality Assessment (NR-IQA) aims to assess the perceptual quality of images in accordance with human subjective perception.
Existing NR-IQA methods are far from meeting the needs of predicting accurate quality scores on GAN-based distortion images.
We propose Multi-dimension Attention Network for no-reference Image Quality Assessment (MANIQA) to improve the performance on GAN-based distortion.
arXiv Detail & Related papers (2022-04-19T15:56:43Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
We propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination.
The effectiveness of our proposed method is demonstrated on four popular IQA databases.
arXiv Detail & Related papers (2021-08-09T16:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.