Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-axis Attention
- URL: http://arxiv.org/abs/2502.19046v1
- Date: Wed, 26 Feb 2025 11:01:03 GMT
- Title: Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-axis Attention
- Authors: Jiebin Yan, Ziwen Tan, Yuming Fang, Jiale Rao, Yifan Zuo,
- Abstract summary: We propose a novel and effective blind omnidirectional image quality assessment model with multi-axis attention (Max360IQ)<n>Max360IQ can proficiently measure not only the quality of uniformly distorted omnidirectional images but also the quality of non-uniformly distorted omnidirectional images.
- Score: 30.688264840230755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Omnidirectional image, also called 360-degree image, is able to capture the entire 360-degree scene, thereby providing more realistic immersive feelings for users than general 2D image and stereoscopic image. Meanwhile, this feature brings great challenges to measuring the perceptual quality of omnidirectional images, which is closely related to users' quality of experience, especially when the omnidirectional images suffer from non-uniform distortion. In this paper, we propose a novel and effective blind omnidirectional image quality assessment (BOIQA) model with multi-axis attention (Max360IQ), which can proficiently measure not only the quality of uniformly distorted omnidirectional images but also the quality of non-uniformly distorted omnidirectional images. Specifically, the proposed Max360IQ is mainly composed of a backbone with stacked multi-axis attention modules for capturing both global and local spatial interactions of extracted viewports, a multi-scale feature integration (MSFI) module to fuse multi-scale features and a quality regression module with deep semantic guidance for predicting the quality of omnidirectional images. Experimental results demonstrate that the proposed Max360IQ outperforms the state-of-the-art Assessor360 by 3.6\% in terms of SRCC on the JUFE database with non-uniform distortion, and gains improvement of 0.4\% and 0.8\% in terms of SRCC on the OIQA and CVIQ databases, respectively. The source code is available at https://github.com/WenJuing/Max360IQ.
Related papers
- Omnidirectional Image Quality Captioning: A Large-scale Database and A New Model [35.232181599179306]
We conduct the largest study so far on omnidirectional image quality assessment (OIQA) using a large-scale database called OIQ-10K.
A comprehensive psychophysical study is elaborated to collect human opinions for each omnidirectional image.
We propose a novel adaptive feature-tailoring OIQA model named IQCaption360, which is capable of generating a quality caption for an omnidirectional image.
arXiv Detail & Related papers (2025-02-21T07:54:00Z) - Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images [10.382801621282228]
We develop an objective quality assessment model named depth quality index (DQI) for efficient no-reference (NR) depth quality assessment of stereoscopic omnidirectional images.
Motivated by the perceptual characteristics of the human visual system (HVS), the proposed DQI is built upon multi-color-channel, adaptive viewport selection, and interocular discrepancy features.
arXiv Detail & Related papers (2024-08-19T16:28:05Z) - ESIQA: Perceptual Quality Assessment of Vision-Pro-based Egocentric Spatial Images [70.68629648595677]
Egocentric images and videos are emerging as a compelling form of stereoscopic XR content.<n>The corresponding image quality assessment (IQA) research for egocentric spatial images is still lacking.<n>In this paper, we establish the Egocentric Spatial Images Quality Assessment Database (ESQAD), the first IQA database dedicated for egocentric spatial images.
arXiv Detail & Related papers (2024-07-31T06:20:21Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
We establish a large-scale AI generated omnidirectional image IQA database named AIGCOIQA2024.
A subjective IQA experiment is conducted to assess human visual preferences from three perspectives.
We conduct a benchmark experiment to evaluate the performance of state-of-the-art IQA models on our database.
arXiv Detail & Related papers (2024-04-01T10:08:23Z) - Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity [55.399230250413986]
We propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) to remove harmful semantic noise features from the upstream task.
Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.
arXiv Detail & Related papers (2023-12-11T06:50:27Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - ST360IQ: No-Reference Omnidirectional Image Quality Assessment with
Spherical Vision Transformers [17.48330099000856]
We present a method for no-reference 360 image quality assessment.
Our approach predicts the quality of an omnidirectional image correlated with the human-perceived image quality.
arXiv Detail & Related papers (2023-03-13T07:48:46Z) - Multi-Projection Fusion and Refinement Network for Salient Object
Detection in 360{\deg} Omnidirectional Image [141.10227079090419]
We propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360deg omnidirectional image.
MPFR-Net uses the equirectangular projection image and four corresponding cube-unfolding images as inputs.
Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-12-23T14:50:40Z) - No-Reference Quality Assessment for 360-degree Images by Analysis of
Multi-frequency Information and Local-global Naturalness [26.614657212889398]
360-degree/omnidirectional images (OIs) have achieved remarkable attentions due to the increasing applications of virtual reality (VR)
We propose a novel and effective no-reference omnidirectional image quality assessment (NR OIQA) algorithm by Multi-Frequency Information and Local-Global Naturalness (MFILGN)
Experimental results on two publicly available OIQA databases demonstrate that our proposed MFILGN outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-22T22:52:35Z) - Visual Question Answering on 360{\deg} Images [96.00046925811515]
VQA 360 is a novel task of visual question answering on 360 images.
We collect the first VQA 360 dataset, containing around 17,000 real-world image-question-answer triplets for a variety of question types.
arXiv Detail & Related papers (2020-01-10T08:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.