MesoGraph: Automatic Profiling of Malignant Mesothelioma Subtypes from
Histological Images
- URL: http://arxiv.org/abs/2302.12653v1
- Date: Thu, 23 Feb 2023 11:11:55 GMT
- Title: MesoGraph: Automatic Profiling of Malignant Mesothelioma Subtypes from
Histological Images
- Authors: Mark Eastwood and Heba Sailem and Silviu Tudor and Xiaohong Gao and
Judith Offman and Emmanouil Karteris and Angeles Montero Fernandez and Danny
Jonigk and William Cookson and Miriam Moffatt and Sanjay Popat and Fayyaz
Minhas and Jan Lukas Robertus
- Abstract summary: We develop a novel dual-task Graph Neural Network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution.
This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score of all the cells in the sample.
We validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score, finding that some of the morphological differences identified by our model match known differences used by pathologists.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malignant mesothelioma is classified into three histological subtypes,
Epithelioid, Sarcomatoid, and Biphasic according to the relative proportions of
epithelioid and sarcomatoid tumor cells present. Biphasic tumors display
significant populations of both cell types. This subtyping is subjective and
limited by current diagnostic guidelines and can differ even between expert
thoracic pathologists when characterising the continuum of relative proportions
of epithelioid and sarcomatoid components using a three class system. In this
work, we develop a novel dual-task Graph Neural Network (GNN) architecture with
ranking loss to learn a model capable of scoring regions of tissue down to
cellular resolution. This allows quantitative profiling of a tumor sample
according to the aggregate sarcomatoid association score of all the cells in
the sample. The proposed approach uses only core-level labels and frames the
prediction task as a dual multiple instance learning (MIL) problem. Tissue is
represented by a cell graph with both cell-level morphological and regional
features. We use an external multi-centric test set from Mesobank, on which we
demonstrate the predictive performance of our model. We validate our model
predictions through an analysis of the typical morphological features of cells
according to their predicted score, finding that some of the morphological
differences identified by our model match known differences used by
pathologists. We further show that the model score is predictive of patient
survival with a hazard ratio of 2.30. The code for the proposed approach, along
with the dataset, is available at: https://github.com/measty/MesoGraph.
Related papers
- DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology [1.3551232282678036]
We introduce DinoBloom, the first foundation model for single cell images in hematology.
Our model is built upon an extensive collection of 13 diverse, publicly available datasets of peripheral blood and bone marrow smears.
A family of four DinoBloom models can be adapted for a wide range of downstream applications.
arXiv Detail & Related papers (2024-04-07T17:25:52Z) - Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images [0.5906576076342179]
Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns.
We propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor.
arXiv Detail & Related papers (2023-11-27T14:12:51Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Adversarial learning of cancer tissue representations [6.395981404833557]
We present an adversarial learning model to extract feature representations of cancer tissue, without the need for manual annotations.
We show that these representations are able to identify a variety of morphological characteristics across three cancer types: Breast, colon, and lung.
Our results show that our model captures distinct phenotypic characteristics of real tissue samples, paving the way for further understanding of tumor progression and tumor micro-environment.
arXiv Detail & Related papers (2021-08-04T18:00:47Z) - Hierarchical Phenotyping and Graph Modeling of Spatial Architecture in
Lymphoid Neoplasms [7.229065627904531]
This study is among the first to hybrid local and global graph methods to profile orchestration and interaction of cellular components.
The proposed algorithm achieves a mean diagnosis accuracy of 0.703 with the repeated 5-fold cross-validation scheme.
arXiv Detail & Related papers (2021-06-30T16:09:32Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting [4.164451715899639]
We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide.
We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections.
We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context.
arXiv Detail & Related papers (2021-01-27T22:40:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.