Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images
- URL: http://arxiv.org/abs/2311.15847v2
- Date: Thu, 16 May 2024 09:19:05 GMT
- Title: Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images
- Authors: Arwa Al-Rubaian, Gozde N. Gunesli, Wajd A. Althakfi, Ayesha Azam, Nasir Rajpoot, Shan E Ahmed Raza,
- Abstract summary: Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns.
We propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor.
- Score: 0.5906576076342179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns. The quantity of these patterns can be related to tumor behavior and has a significant impact on patient prognosis. In this work, we propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor, with an Area Under the Receiver Operating Characteristic Curve (AUCROC) score of 0.97. Our model's strength lies in its comprehensive consideration of cellular spatial patterns, where it first generates cell maps from Hematoxylin and Eosin (H&E) whole slide images (WSIs), which are then fed into a convolutional neural network classification model. Exploiting these cell maps provides the model with robust generalizability to new data, achieving approximately 30% higher accuracy on unseen test-sets compared to current state of the art approaches. The insights derived from our model can be used to predict prognosis, enhancing patient outcomes.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - RCdpia: A Renal Carcinoma Digital Pathology Image Annotation dataset based on pathologists [14.79279940958727]
We have compiled the TCGA digital pathological dataset with independent labeling of tumor regions and adjacent areas (RCdpia)
This dataset is now publicly accessible at http://39.171.241.18:8888/RCdpia/.
arXiv Detail & Related papers (2024-03-17T13:23:25Z) - Histopathologic Cancer Detection [0.0]
This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
arXiv Detail & Related papers (2023-11-13T19:51:46Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - MesoGraph: Automatic Profiling of Malignant Mesothelioma Subtypes from
Histological Images [0.0]
We develop a novel dual-task Graph Neural Network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution.
This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score of all the cells in the sample.
We validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score, finding that some of the morphological differences identified by our model match known differences used by pathologists.
arXiv Detail & Related papers (2023-02-23T11:11:55Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.