論文の概要: Modelling Temporal Document Sequences for Clinical ICD Coding
- arxiv url: http://arxiv.org/abs/2302.12666v1
- Date: Fri, 24 Feb 2023 14:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 13:29:59.723079
- Title: Modelling Temporal Document Sequences for Clinical ICD Coding
- Title(参考訳): 臨床icd符号化のための時間文書系列のモデル化
- Authors: Clarence Boon Liang Ng, Diogo Santos, Marek Rei
- Abstract要約: 本稿では,ICD符号化のための病院留置所における臨床ノートの全列にテキストを用いた階層型トランスフォーマーアーキテクチャを提案する。
すべての臨床ノートを使用すると、データ量が大幅に増加するが、超収束はトレーニングコストの削減に利用することができる。
本モデルでは, 放電サマリーのみを入力として使用する場合の先行技術を超え, 全臨床ノートを入力として使用する場合のさらなる性能向上を実現している。
- 参考スコア(独自算出の注目度): 9.906895077843663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Past studies on the ICD coding problem focus on predicting clinical codes
primarily based on the discharge summary. This covers only a small fraction of
the notes generated during each hospital stay and leaves potential for
improving performance by analysing all the available clinical notes. We propose
a hierarchical transformer architecture that uses text across the entire
sequence of clinical notes in each hospital stay for ICD coding, and
incorporates embeddings for text metadata such as their position, time, and
type of note. While using all clinical notes increases the quantity of data
substantially, superconvergence can be used to reduce training costs. We
evaluate the model on the MIMIC-III dataset. Our model exceeds the prior
state-of-the-art when using only discharge summaries as input, and achieves
further performance improvements when all clinical notes are used as input.
- Abstract(参考訳): ICD符号化問題に関する過去の研究は、主に放電サマリーに基づく臨床コードの予測に重点を置いていた。
これは各病院滞在中に発生したメモのごく一部に過ぎず、利用可能なすべての臨床ノートを分析して、パフォーマンスを改善する可能性を秘めている。
我々は,icd符号化のために各病院における臨床ノートのシーケンス全体にわたってテキストを用いた階層的トランスフォーマーアーキテクチャを提案し,その位置,時間,メモの種類などのテキストメタデータへの埋め込みを組み込む。
すべての臨床ノートを使用するとデータ量が大幅に増加するが、superconvergenceはトレーニングコストの削減に使用できる。
このモデルをMIMIC-IIIデータセット上で評価する。
本モデルは,排他的要約のみを入力として使用する場合の先行技術を超え,すべての臨床ノートを入力として使用する場合のさらなる性能向上を実現する。
関連論文リスト
- Harmonising the Clinical Melody: Tuning Large Language Models for Hospital Course Summarisation in Clinical Coding [5.279406017862076]
病院のコースをまとめることの課題は、さらなる研究と開発のためのオープンな領域のままである。
Llama 3, BioMistral, Mistral Instruct v0.1 の3種類のプレトレーニング LLM を病院コース要約作業に適用した。
臨床領域の微調整の有効性を評価するため,BERTScoreおよびROUGE測定値を用いて微調整モデルの評価を行った。
論文 参考訳(メタデータ) (2024-09-23T00:35:23Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Making the Most Out of the Limited Context Length: Predictive Power
Varies with Clinical Note Type and Note Section [70.37720062263176]
本研究では,高い予測力で区間を解析する枠組みを提案する。
MIMIC-IIIを用いて,(1)看護用音符と退院用音符とでは予測電力分布が異なること,(2)文脈長が大きい場合の音符の組み合わせにより性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-13T20:04:05Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
異種臨床データを扱うグラフ変換器を用いたネットワークを提案する。
自己教師型, 移動学習環境において, 事前学習方式の利点を示す。
論文 参考訳(メタデータ) (2022-07-21T16:59:09Z) - Hierarchical Label-wise Attention Transformer Model for Explainable ICD
Coding [10.387366211090734]
臨床文書からのICD符号の予測のための階層型ラベル対応アテンショントランスフォーマモデル (HiLAT) を提案する。
MIMIC-IIIデータベースから,病院の退院サマリーと対応するICD-9符号を用いたHiLATの評価を行った。
注意重みの可視化は、ICDコード予測の顔の妥当性を確認するための潜在的な説明可能性ツールを示す。
論文 参考訳(メタデータ) (2022-04-22T14:12:22Z) - Improving the Factual Accuracy of Abstractive Clinical Text
Summarization using Multi-Objective Optimization [3.977582258550673]
本稿では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のためのフレームワークを提案する。
本研究では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のための枠組みを提案する。
論文 参考訳(メタデータ) (2022-04-02T07:59:28Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
事前訓練されたモデルが、さらなるアーキテクチャエンジニアリングなしで医療コード予測に有用かどうかは明らかではない。
本稿では,単語間のインタラクションをキャプチャし,ラベル情報を活用する階層的な微調整アーキテクチャを提案する。
現在の傾向とは対照的に、我々は慎重に訓練された古典的なCNNは、頻繁なコードでMIMIC-IIIサブセット上の注意ベースのモデルを上回ることを実証します。
論文 参考訳(メタデータ) (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - An Interpretable End-to-end Fine-tuning Approach for Long Clinical Text [72.62848911347466]
EHRにおける非構造化臨床テキストには、意思決定支援、トライアルマッチング、振り返り研究を含むアプリケーションにとって重要な情報が含まれている。
最近の研究は、これらのモデルが他のNLPドメインにおける最先端の性能を考慮し、BERTベースのモデルを臨床情報抽出およびテキスト分類に応用している。
本稿では,SnipBERTという新しい微調整手法を提案する。SnipBERTは全音符を使用する代わりに,重要なスニペットを識別し,階層的に切り刻まれたBERTベースのモデルに供給する。
論文 参考訳(メタデータ) (2020-11-12T17:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。