論文の概要: Self-supervised Answer Retrieval on Clinical Notes
- arxiv url: http://arxiv.org/abs/2108.00775v1
- Date: Mon, 2 Aug 2021 10:42:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 22:15:23.509046
- Title: Self-supervised Answer Retrieval on Clinical Notes
- Title(参考訳): 臨床ノートにおける自己指導型回答検索
- Authors: Paul Grundmann, Sebastian Arnold, Alexander L\"oser
- Abstract要約: 本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
- 参考スコア(独自算出の注目度): 68.87777592015402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieving answer passages from long documents is a complex task requiring
semantic understanding of both discourse and document context. We approach this
challenge specifically in a clinical scenario, where doctors retrieve cohorts
of patients based on diagnoses and other latent medical aspects. We introduce
CAPR, a rule-based self-supervision objective for training Transformer language
models for domain-specific passage matching. In addition, we contribute a novel
retrieval dataset based on clinical notes to simulate this scenario on a large
corpus of clinical notes. We apply our objective in four Transformer-based
architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders. From
our extensive evaluation on MIMIC-III and three other healthcare datasets, we
report that CAPR outperforms strong baselines in the retrieval of
domain-specific passages and effectively generalizes across rule-based and
human-labeled passages. This makes the model powerful especially in zero-shot
scenarios where only limited training data is available.
- Abstract(参考訳): 長い文書から回答文を取得することは、会話と文書コンテキストの両方を意味的に理解する必要がある複雑な作業である。
医師が診断やその他の潜伏する医療的側面に基づいて患者のコホートを検索する臨床シナリオにおいて、この課題に特にアプローチする。
ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースの自己スーパービジョン目標であるcaprを紹介する。
さらに,このシナリオを臨床ノートの大規模コーパスでシミュレートするために,臨床ノートに基づく新たな検索データセットを寄贈した。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
MIMIC-IIIおよび他の3つの医療データセットに対する広範な評価から、CAPRはドメイン固有のパスの検索において強いベースラインを上回り、ルールベースおよび人間ラベルのパスを効果的に一般化する。
これにより、特に限られたトレーニングデータしか利用できないゼロショットシナリオでは、モデルが強力になる。
関連論文リスト
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training [15.04212780946932]
階層的視覚言語アライメントを用いた医療報告から構造情報を学習するための新しいフレームワークImitateを提案する。
このフレームワークは胸部X線(CXR)画像から多段階の視覚特徴を導出し、これらの特徴を階層的な医療報告に符号化された記述的および決定的テキストと別々に整列する。
論文 参考訳(メタデータ) (2023-10-11T10:12:43Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-08-03T08:33:21Z) - Improving the Factual Accuracy of Abstractive Clinical Text
Summarization using Multi-Objective Optimization [3.977582258550673]
本稿では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のためのフレームワークを提案する。
本研究では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のための枠組みを提案する。
論文 参考訳(メタデータ) (2022-04-02T07:59:28Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。