A DeepONet multi-fidelity approach for residual learning in reduced
order modeling
- URL: http://arxiv.org/abs/2302.12682v3
- Date: Sat, 18 Nov 2023 01:31:37 GMT
- Title: A DeepONet multi-fidelity approach for residual learning in reduced
order modeling
- Authors: Nicola Demo and Marco Tezzele and Gianluigi Rozza
- Abstract summary: We introduce a novel approach to enhance the precision of reduced order models by exploiting a multi-fidelity perspective and DeepONets.
We propose to couple the model reduction to a machine learning residual learning, such that the above-mentioned error can be learned by a neural network and inferred for new predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present work, we introduce a novel approach to enhance the precision
of reduced order models by exploiting a multi-fidelity perspective and
DeepONets. Reduced models provide a real-time numerical approximation by
simplifying the original model. The error introduced by the such operation is
usually neglected and sacrificed in order to reach a fast computation. We
propose to couple the model reduction to a machine learning residual learning,
such that the above-mentioned error can be learned by a neural network and
inferred for new predictions. We emphasize that the framework maximizes the
exploitation of high-fidelity information, using it for building the reduced
order model and for learning the residual. In this work, we explore the
integration of proper orthogonal decomposition (POD), and gappy POD for sensors
data, with the recent DeepONet architecture. Numerical investigations for a
parametric benchmark function and a nonlinear parametric Navier-Stokes problem
are presented.
Related papers
- Deep learning for model correction of dynamical systems with data scarcity [0.0]
We present a deep learning framework for correcting existing dynamical system models utilizing only a scarce high-fidelity data set.
We focus on the case when the amount of high-fidelity data is so small that most of the existing data driven modeling methods cannot be applied.
arXiv Detail & Related papers (2024-10-23T14:33:11Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Investigating the Relationship Between Dropout Regularization and Model
Complexity in Neural Networks [0.0]
Dropout Regularization serves to reduce variance in Deep Learning models.
We explore the relationship between the dropout rate and model complexity by training 2,000 neural networks.
We build neural networks that predict the optimal dropout rate given the number of hidden units in each dense layer.
arXiv Detail & Related papers (2021-08-14T23:49:33Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Neural Closure Models for Dynamical Systems [35.000303827255024]
We develop a novel methodology to learn non-Markovian closure parameterizations for low-fidelity models.
New "neural closure models" augment low-fidelity models with neural delay differential equations (nDDEs)
We show that using non-Markovian over Markovian closures improves long-term accuracy and requires smaller networks.
arXiv Detail & Related papers (2020-12-27T05:55:33Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli dropout (LBD) is a new model-agnostic dropout scheme that considers the dropout rates as parameters jointly optimized with other model parameters.
LBD leads to improved accuracy and uncertainty estimates in image classification and semantic segmentation.
arXiv Detail & Related papers (2020-02-12T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.