Recurrent Mask Refinement for Few-Shot Medical Image Segmentation
- URL: http://arxiv.org/abs/2108.00622v2
- Date: Wed, 4 Aug 2021 04:27:27 GMT
- Title: Recurrent Mask Refinement for Few-Shot Medical Image Segmentation
- Authors: Hao Tang, Xingwei Liu, Shanlin Sun, Xiangyi Yan, and Xiaohui Xie
- Abstract summary: We propose a new framework for few-shot medical image segmentation based on prototypical networks.
Our innovation lies in the design of two key modules: 1) a context relation encoder (CRE) that uses correlation to capture local relation features between foreground and background regions.
Experiments on two abdomen CT datasets and an abdomen MRI dataset show the proposed method obtains substantial improvement over the state-of-the-art methods.
- Score: 15.775057485500348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although having achieved great success in medical image segmentation, deep
convolutional neural networks usually require a large dataset with manual
annotations for training and are difficult to generalize to unseen classes.
Few-shot learning has the potential to address these challenges by learning new
classes from only a few labeled examples. In this work, we propose a new
framework for few-shot medical image segmentation based on prototypical
networks. Our innovation lies in the design of two key modules: 1) a context
relation encoder (CRE) that uses correlation to capture local relation features
between foreground and background regions; and 2) a recurrent mask refinement
module that repeatedly uses the CRE and a prototypical network to recapture the
change of context relationship and refine the segmentation mask iteratively.
Experiments on two abdomen CT datasets and an abdomen MRI dataset show the
proposed method obtains substantial improvement over the state-of-the-art
methods by an average of 16.32%, 8.45% and 6.24% in terms of DSC, respectively.
Code is publicly available.
Related papers
- Distillation Learning Guided by Image Reconstruction for One-Shot Medical Image Segmentation [12.33442990188044]
One-shot medical image segmentation (MIS) methods often struggle with registration errors and low-quality synthetic images.
We introduce a novel one-shot MIS framework based on knowledge distillation.
It allows the network to directly'see' real images through a distillation process guided by image reconstruction.
arXiv Detail & Related papers (2024-08-07T08:17:34Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
We propose a novel framework for few-shot medical image segmentation, termed CAT-Net.
Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information.
We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI.
arXiv Detail & Related papers (2023-03-24T09:10:14Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Multimodal Transfer Learning-based Approaches for Retinal Vascular
Segmentation [2.672151045393935]
The study of the retinal microcirculation is a key issue in the analysis of many ocular and systemic diseases, like hypertension or diabetes.
FCNs usually represent the most successful approach to image segmentation.
In this work, we present multimodal transfer learning-based approaches for retinal vascular segmentation.
arXiv Detail & Related papers (2020-12-18T10:38:35Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.