論文の概要: Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local
Search
- arxiv url: http://arxiv.org/abs/2302.13225v1
- Date: Sun, 26 Feb 2023 03:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 18:12:36.105102
- Title: Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local
Search
- Title(参考訳): ネストモンテカルロと局所探索を組み合わせたMaxSATの実現に向けて
- Authors: Hui Wang, Abdallah Saffidine, Tristan Cazenave
- Abstract要約: UCTMAXSAT上でのアルゴリズム的バリエーションを2つ紹介する。
まず、Nested Monte Carlo Searchアルゴリズムにインスパイアされた木探索のネストは、ベンチマークのほとんどのインスタンスタイプに有効である。
第二に、SLSの静的フリップ制限を用いることで、理想的な予算はインスタンスサイズに大きく依存し、動的に設定することを提案する。
- 参考スコア(独自算出の注目度): 10.70006528984961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work proposed the UCTMAXSAT algorithm to address Maximum
Satisfiability Problems (MaxSAT) and shown improved performance over pure
Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo
Tree Search but it uses SLS instead of purely random playouts. In this work, we
introduce two algorithmic variations over UCTMAXSAT. We carry an empirical
analysis on MaxSAT benchmarks from recent competitions and establish that both
ideas lead to performance improvements. First, a nesting of the tree search
inspired by the Nested Monte Carlo Search algorithm is effective on most
instance types in the benchmark. Second, we observe that using a static flip
limit in SLS, the ideal budget depends heavily on the instance size and we
propose to set it dynamically. We show that it is a robust way to achieve
comparable performance on a variety of instances without requiring additional
tuning.
- Abstract(参考訳): 最近の研究は、最大満足度問題(MaxSAT)に対処するUTTMAXSATアルゴリズムを提案し、純粋な確率局所探索アルゴリズム(SLS)よりも優れた性能を示した。
UCTMAXSATはモンテカルロ木探索に基づいているが、純粋にランダムなプレイアウトの代わりにSLSを使用している。
本稿では,UCTMAXSAT上での2つのアルゴリズム的バリエーションを紹介する。
我々は最近のコンペからMaxSATベンチマークを実証分析し、両方のアイデアが性能改善につながることを証明した。
まず、Nested Monte Carlo Searchアルゴリズムにインスパイアされた木探索のネストは、ベンチマークのほとんどのインスタンスタイプに有効である。
第二に、SLSの静的フリップ制限を用いることで、理想的な予算はインスタンスサイズに大きく依存し、動的に設定することを提案する。
追加のチューニングを必要とせずに、さまざまなインスタンスで同等のパフォーマンスを実現するための堅牢な方法であることを示す。
関連論文リスト
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - AutoSAT: Automatically Optimize SAT Solvers via Large Language Models [10.359005620433136]
本稿では,既存のCDCLソルバをベースとしたモジュール型検索空間の自動最適化フレームワークであるAutoSATを提案する。
AutoSATは12データセット中9データセットでMiniSatを上回り、4データセットで最先端のハイブリッドソルバKissatを上回ります。
論文 参考訳(メタデータ) (2024-02-16T14:04:56Z) - Rethinking the Soft Conflict Pseudo Boolean Constraint on MaxSAT Local
Search Solvers [20.866863965121013]
MaxSATは、有名なNP完全満足度問題(SAT)の最適化版である。
そこで我々は,SPB-MaxSATと呼ばれる局所探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-19T09:59:02Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
我々は,選択した$n$のアームセットのジョイント報酬以外の余分な情報が観測されない場合に,マルチアームのバンディット問題に対する新規グリーディ・バンディット(SGB)アルゴリズムを提案する。
SGBは最適化された拡張型コミットアプローチを採用しており、ベースアームの大きなセットを持つシナリオ用に特別に設計されている。
論文 参考訳(メタデータ) (2023-12-13T11:08:25Z) - Incorporating Multi-armed Bandit with Local Search for MaxSAT [16.371916145216737]
MaxSAT問題の2つの一般化: partial MaxSAT (PMS) と Weighted PMS (WPMS)
そこで本稿では,BandHSと呼ばれる局所探索アルゴリズムを提案する。
これら2つの帯域は、実現不可能な解空間と実現不可能な解空間の両方において、アルゴリズムの探索能力を向上させることができる。
論文 参考訳(メタデータ) (2022-11-29T08:19:26Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - DPMS: An ADD-Based Symbolic Approach for Generalized MaxSAT Solving [45.21499915442282]
本稿では,ハイブリッド制約を用いた一般化MaxSAT問題の解法について,新しい動的プログラミング手法を提案する。
我々の汎用フレームワークは、MaxSAT、Min-MaxSAT、MinSATといったCNF-MaxSATの多くの一般化をハイブリッド制約で認めている。
実験の結果、DPMSは様々な手法に基づく他のアルゴリズムがすべて失敗し、特定の問題を迅速に解決できることがわかった。
論文 参考訳(メタデータ) (2022-05-08T00:31:53Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Incomplete MaxSAT Approaches for Combinatorial Testing [0.0]
本稿では,最小長の制約付き混合被覆アレイを構築するためのSAT(Satifiability)に基づくアプローチを提案する。
この問題はシステム障害検出のためのコンビネータテストの中心である。
論文 参考訳(メタデータ) (2021-05-26T14:00:56Z) - Monte-Carlo Tree Search as Regularized Policy Optimization [47.541849128047865]
我々は,AlphaZeroの探索アルゴリズムが,特定の正規化ポリシ最適化問題の解の近似であることを示す。
我々は、このポリシー最適化問題の正確な解法を用いて、AlphaZeroの変種を提案し、複数の領域において元のアルゴリズムを確実に上回ることを示す。
論文 参考訳(メタデータ) (2020-07-24T13:01:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。