論文の概要: Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
- arxiv url: http://arxiv.org/abs/2302.13336v2
- Date: Wed, 15 Jan 2025 20:50:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:07:56.140597
- Title: Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
- Title(参考訳): 早期膝関節症におけるデータ拡張のためのキー交換畳み込み自動エンコーダ
- Authors: Zhe Wang, Aladine Chetouani, Mohamed Jarraya, Yung Hsin Chen, Yuhua Ru, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane,
- Abstract要約: Key-Exchange Convolutional Auto-Encoder (KECAE)は、初期のKOA分類のためのAIベースのデータ拡張戦略である。
我々のモデルは、合成画像を生成する新しいキー交換機構を備えた畳み込みオートエンコーダを用いる。
実験結果から,KECAEが生成したデータはKOA分類モデルの性能を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 8.193689534916988
- License:
- Abstract: Knee Osteoarthritis (KOA) is a common musculoskeletal condition that significantly affects mobility and quality of life, particularly in elderly populations. However, training deep learning models for early KOA classification is often hampered by the limited availability of annotated medical datasets, owing to the high costs and labour-intensive nature of data labelling. Traditional data augmentation techniques, while useful, rely on simple transformations and fail to introduce sufficient diversity into the dataset. To address these challenges, we propose the Key-Exchange Convolutional Auto-Encoder (KECAE) as an innovative Artificial Intelligence (AI)-based data augmentation strategy for early KOA classification. Our model employs a convolutional autoencoder with a novel key-exchange mechanism that generates synthetic images by selectively exchanging key pathological features between X-ray images, which not only diversifies the dataset but also ensures the clinical validity of the augmented data. A hybrid loss function is introduced to supervise feature learning and reconstruction, integrating multiple components, including reconstruction, supervision, and feature separation losses. Experimental results demonstrate that the KECAE-generated data significantly improve the performance of KOA classification models, with accuracy gains of up to 1.98% across various standard and state-of-the-art architectures. Furthermore, a clinical validation study involving expert radiologists confirms the anatomical plausibility and diagnostic realism of the synthetic outputs. These findings highlight the potential of KECAE as a robust tool for augmenting medical datasets in early KOA detection.
- Abstract(参考訳): 変形性膝関節症(KOA)は、特に高齢者において、運動量や生活の質に大きな影響を及ぼす一般的な筋骨格疾患である。
しかしながら、初期のKOA分類のためのディープラーニングモデルのトレーニングは、高コストと労働集約的なデータラベリングのため、注釈付き医療データセットの可用性が制限されているため、しばしば妨げられる。
従来のデータ拡張テクニックは有用だが、単純な変換に依存し、データセットに十分な多様性を導入できない。
これらの課題に対処するために、初期のKOA分類のための革新的な人工知能(AI)ベースのデータ拡張戦略として、キー交換畳み込みオートエンコーダ(KECAE)を提案する。
本モデルでは,X線画像間で重要な病的特徴を選択的に交換することで合成画像を生成する新しいキー交換機構を備えた畳み込みオートエンコーダを用いて,データセットの多様化だけでなく,拡張データの臨床的妥当性も保証する。
特徴学習と再構成を監督するためにハイブリッド損失関数を導入し、再構成、監督、特徴分離損失を含む複数のコンポーネントを統合する。
実験の結果、KECAEが生成したデータは、様々な標準および最先端アーキテクチャで最大1.98%の精度でKOA分類モデルの性能を著しく向上させることが示された。
さらに, 専門医による臨床検証では, 合成出力の解剖学的妥当性と診断的現実性が確認されている。
これらの知見は、早期のKOA検出において、医療データセットを増強するための堅牢なツールとしてKECAEの可能性を浮き彫りにした。
関連論文リスト
- MA^2: A Self-Supervised and Motion Augmenting Autoencoder for Gait-Based Automatic Disease Detection [7.483446634501235]
グラウンド・リアクション・フォース(英語: Ground reaction force、GRF)は、グラウンドが物体に接触して働く力である。
GRFをベースとした自動疾患検出(ADD)が,新たな診断方法となった。
論文 参考訳(メタデータ) (2024-11-05T14:21:01Z) - Revisiting the Disequilibrium Issues in Tackling Heart Disease Classification Tasks [5.834731599084117]
心臓病の分類の分野では2つの主要な障害が生じる。
心電図(ECG)データセットは、様々なモードにおける不均衡とバイアスを一貫して示している。
信号符号化画像に対してチャネルワイド・マグニチュード等化器(CME)を提案する。
また、データ間の不均衡を軽減するために、逆重対数損失(IWL)を提案する。
論文 参考訳(メタデータ) (2024-07-19T09:50:49Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Adaptive Variance Thresholding: A Novel Approach to Improve Existing
Deep Transfer Vision Models and Advance Automatic Knee-Joint Osteoarthritis
Classification [0.11249583407496219]
Knee-Joint型変形性関節症(KOA)は、世界的な障害の原因であり、診断に本質的に複雑である。
1つの有望な分類経路は、ディープラーニングの手法を適用することである。
本研究は,学習後特殊分類器を改善するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-10T00:17:07Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Transformer with Selective Shuffled Position Embedding and Key-Patch
Exchange Strategy for Early Detection of Knee Osteoarthritis [7.656764569447645]
膝骨関節炎(KOA)は、高齢者の運動に深刻な影響を与える筋骨格障害である。
不十分な医療データは、データラベリングに伴う高コストのため、モデルを効果的に訓練する上で重要な障害となる。
本稿では,従来のSelective Shuffled Position Embedding (SSPE) とキーパッチ交換戦略を用いたビジョントランスフォーマー(ViT)モデルに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-17T15:26:42Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
本稿では,教師なし特徴抽出器として生成拡散オートエンコーダモデルを訓練するための新しい手法を提案する。
フラクチャーグレーディングを連続回帰としてモデル化し, フラクチャーのスムーズな進行を反映した。
重要なことに,本手法の創成特性は,与えられた脊椎の様々な段階を可視化し,自動グルーピングに寄与する特徴を解釈し,洞察することを可能にする。
論文 参考訳(メタデータ) (2023-03-21T17:16:01Z) - A Missing Value Filling Model Based on Feature Fusion Enhanced
Autoencoder [7.232232177308124]
本稿では,機能融合型オートエンコーダをベースとした不足値充足モデルを提案する。
動的クラスタリングに基づく,不足値の充足戦略を開発した。
提案手法の有効性を実験により検証した。
論文 参考訳(メタデータ) (2022-08-29T10:56:12Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
ドメイン分類は自然言語理解(NLU)の基本課題である
既存の継続的な学習アプローチの多くは、低い精度とパフォーマンスの変動に悩まされている。
本研究では,テキストデータに対するパラメータフリー連続学習モデルを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。