Tensor network simulation of the quantum Kibble-Zurek quench from the
Mott to superfluid phase in the two-dimensional Bose-Hubbard model
- URL: http://arxiv.org/abs/2302.13347v2
- Date: Thu, 13 Apr 2023 05:07:53 GMT
- Title: Tensor network simulation of the quantum Kibble-Zurek quench from the
Mott to superfluid phase in the two-dimensional Bose-Hubbard model
- Authors: Jacek Dziarmaga and Jakub M. Mazur
- Abstract summary: We show that even relatively short ramp/quench times allow one to test the power laws predicted by the KZ mechanism (KZM)
They can be verified for the correlation length and the excitation energy but the most reliable test is based on the KZM scaling hypothesis for the single particle correlation function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulations of the Bose-Hubbard model (BHM) at commensurate filling
can follow spreading of correlations after a sudden quench for times long
enough to estimate their propagation velocities. In this work we perform tensor
network simulation of the quantum Kibble-Zurek (KZ) ramp from the Mott towards
the superfluid phase in the square lattice BHM and demonstrate that even
relatively short ramp/quench times allow one to test the power laws predicted
by the KZ mechanism (KZM). They can be verified for the correlation length and
the excitation energy but the most reliable test is based on the KZM scaling
hypothesis for the single particle correlation function: the correlation
functions for different quench times evaluated at the same scaled time collapse
to the same scaling function of the scaled distance. The scaling of the space
and time variables is done according to the KZ power laws.
Related papers
- Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Kink correlations, domain size distribution, and the emptiness formation
probability after the Kibble-Zurek quench in the quantum Ising chain [0.0]
Linear quench of the transverse field drives the quantum Ising chain across a quantum critical point from the paramagnetic to the ferromagnetic phase.
We focus on normal and anomalous quadratic correlators between fermionic kink creation and operators.
Additional slowing down of the ramp in the ferromagnetic phase further increases the dephasing length and suppresses the anomalous correlator.
arXiv Detail & Related papers (2022-05-17T19:17:25Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Tensor-network study of correlation-spreading dynamics in the
two-dimensional Bose-Hubbard model [0.0]
We demonstrate that a tensor-network method running on classical computers is useful for this purpose.
We specifically analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench.
By estimating the phase and group velocities from the single-particle and density-density correlation functions, we predict how these velocities vary in the moderate interaction region.
arXiv Detail & Related papers (2021-08-25T05:37:16Z) - Quantum gravitational decoherence from fluctuating minimal length and
deformation parameter at the Planck scale [0.0]
We introduce a decoherence process due to quantum gravity effects.
We find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it.
arXiv Detail & Related papers (2020-11-02T19:01:16Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.