論文の概要: User-Centric Evaluation of OCR Systems for Kwak'wala
- arxiv url: http://arxiv.org/abs/2302.13410v1
- Date: Sun, 26 Feb 2023 21:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 17:17:22.258601
- Title: User-Centric Evaluation of OCR Systems for Kwak'wala
- Title(参考訳): kwak'wala用ocrシステムのユーザ中心評価
- Authors: Shruti Rijhwani, Daisy Rosenblum, Michayla King, Antonios
Anastasopoulos, Graham Neubig
- Abstract要約: OCRを利用すると、文化的に価値ある文書の書き起こしに費やした時間を50%以上削減できることを示す。
この結果から,OCRツールが下流言語ドキュメントや再生作業において持つ潜在的なメリットが示された。
- 参考スコア(独自算出の注目度): 92.73847703011353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been recent interest in improving optical character recognition
(OCR) for endangered languages, particularly because a large number of
documents and books in these languages are not in machine-readable formats. The
performance of OCR systems is typically evaluated using automatic metrics such
as character and word error rates. While error rates are useful for the
comparison of different models and systems, they do not measure whether and how
the transcriptions produced from OCR tools are useful to downstream users. In
this paper, we present a human-centric evaluation of OCR systems, focusing on
the Kwak'wala language as a case study. With a user study, we show that
utilizing OCR reduces the time spent in the manual transcription of culturally
valuable documents -- a task that is often undertaken by endangered language
community members and researchers -- by over 50%. Our results demonstrate the
potential benefits that OCR tools can have on downstream language documentation
and revitalization efforts.
- Abstract(参考訳): 絶滅危惧言語に対するocr(optical character recognition)の改善には、特に多くの文書や書籍が機械可読化されていないため、近年関心が高まっている。
OCRシステムの性能は一般に文字や単語の誤り率などの自動測定値を用いて評価される。
エラー率は異なるモデルやシステムの比較に有用であるが、OCRツールから生成された転写が下流のユーザにとってどのように有用かは測定されていない。
本稿では,OCRシステムの人間中心評価を事例として,Kwak'wala言語に着目した。
ユーザスタディでは、OCRを利用することで、文化的に価値のある文書のマニュアルの書き起こしに費やされる時間を50%以上削減できることが示されている。
この結果から,OCRツールが下流言語ドキュメントや再生作業において持つ潜在的なメリットが示された。
関連論文リスト
- CLOCR-C: Context Leveraging OCR Correction with Pre-trained Language Models [0.0]
本稿では、コンテキストレバレッジOCR補正(CLOCR-C)を紹介する。
トランスフォーマーベースの言語モデル(LM)の組み込みとコンテキスト適応能力を使用して、OCRの品質を向上する。
本研究の目的は, LMがOCR後の修正を行うことができるか, 下流のNLPタスクを改善するか, 補正プロセスの一部として社会文化的コンテキストを提供することの価値を判断することである。
論文 参考訳(メタデータ) (2024-08-30T17:26:05Z) - EfficientOCR: An Extensible, Open-Source Package for Efficiently
Digitizing World Knowledge [1.8434042562191815]
EffOCRは、オープンソースの光文字認識(OCR)パッケージである。
これは、大規模にテキストを解放するための計算とサンプルの効率の要求を満たす。
EffOCRは安価で、トレーニングにはサンプルの効率がよい。
論文 参考訳(メタデータ) (2023-10-16T04:20:16Z) - BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training [64.37683359609308]
本研究では,機械翻訳システムの学習指導の観点から,各種の主流および最先端の自動測定値について分析する。
BLEURT や BARTScore における普遍的逆変換の存在など,ある種の指標は堅牢性欠陥を示す。
詳細な分析では、これらのロバスト性障害の主な原因は、トレーニングデータセットにおける分布バイアスと、メートル法パラダイムの傾向である。
論文 参考訳(メタデータ) (2023-07-06T16:59:30Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
テキスト関連視覚タスクにおいて, GPT4V や Gemini などの大規模マルチモーダルモデルの包括的評価を行った。
OCRBenchには29のデータセットがあり、最も包括的なOCR評価ベンチマークが利用できる。
論文 参考訳(メタデータ) (2023-05-13T11:28:37Z) - TransDocs: Optical Character Recognition with word to word translation [2.2336243882030025]
本研究は,光学文字認識(OCR)をML技術で改善することに焦点を当てる。
この研究は、英語からスペイン語への翻訳のためのANKIデータセットに基づいている。
論文 参考訳(メタデータ) (2023-04-15T21:40:14Z) - OCR Improves Machine Translation for Low-Resource Languages [10.010595434359647]
我々は,騒音に富んだ実データと合成データからなる新しいベンチマークであるtextscOCR4MTを導入し,公開する。
我々は、我々のベンチマークで最先端のOCRシステムを評価し、最も一般的なエラーを分析した。
次に,OCRエラーが機械翻訳性能に与える影響について検討する。
論文 参考訳(メタデータ) (2022-02-27T02:36:45Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - OCR Post Correction for Endangered Language Texts [113.8242302688894]
我々は、3つの危惧言語でスキャンされた書籍の書き起こしのベンチマークデータセットを作成する。
本稿では,汎用OCRツールがデータ・スカース・セッティングに対して堅牢でないかを体系的に分析する。
我々は,このデータ・スカース・セッティングにおけるトレーニングを容易にするために,OCRポスト補正法を開発した。
論文 参考訳(メタデータ) (2020-11-10T21:21:08Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。