論文の概要: CrystalBox: Future-Based Explanations for Input-Driven Deep RL Systems
- arxiv url: http://arxiv.org/abs/2302.13483v4
- Date: Wed, 27 Mar 2024 17:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 23:31:58.763623
- Title: CrystalBox: Future-Based Explanations for Input-Driven Deep RL Systems
- Title(参考訳): CrystalBox: 入力駆動型深部RLシステムの将来的な説明
- Authors: Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska,
- Abstract要約: 本稿では,Deep Reinforcement Learningコントローラのためのモデルに依存しない,ポストホックな説明可能性フレームワークであるCrystalBoxを紹介する。
入力駆動環境における報酬関数の自然な分解可能性と分解された還元の説明力を組み合わせる。
- 参考スコア(独自算出の注目度): 8.865836639561078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present CrystalBox, a novel, model-agnostic, posthoc explainability framework for Deep Reinforcement Learning (DRL) controllers in the large family of input-driven environments which includes computer systems. We combine the natural decomposability of reward functions in input-driven environments with the explanatory power of decomposed returns. We propose an efficient algorithm to generate future-based explanations across both discrete and continuous control environments. Using applications such as adaptive bitrate streaming and congestion control, we demonstrate CrystalBox's capability to generate high-fidelity explanations. We further illustrate its higher utility across three practical use cases: contrastive explanations, network observability, and guided reward design, as opposed to prior explainability techniques that identify salient features.
- Abstract(参考訳): 本稿では,コンピュータシステムを含む入力駆動環境の大規模ファミリにおける深層強化学習(DRL)コントローラのための,新しい,モデルに依存しない,ポストホックな説明可能性フレームワークであるCrystalBoxを紹介する。
入力駆動環境における報酬関数の自然な分解可能性と分解された還元の説明力を組み合わせる。
離散制御環境と連続制御環境の両方にまたがって将来的な説明を生成するための効率的なアルゴリズムを提案する。
適応ビットレートストリーミングや混雑制御などのアプリケーションを用いて,高忠実度説明を生成するCrystalBoxの能力を示す。
さらに,従来の有能な特徴を識別する説明可能性技術とは対照的に,コントラスト的説明,ネットワーク可観測性,ガイド付き報酬設計の3つの実践事例にまたがって,その高機能性について述べる。
関連論文リスト
- Input-to-State Stable Coupled Oscillator Networks for Closed-form Model-based Control in Latent Space [2.527926867319859]
我々は、制御理論の文献から強力でよく理解された閉形式戦略を活用することが有望な道であると論じる。
既存の潜在空間モデルにおける3つの根本的な欠点は、これまでこの強力な組み合わせを妨げてきた。
これらすべての問題に同時に取り組む新しい結合ネットワーク(CON)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-13T00:11:09Z) - Conditional Idempotent Generative Networks [0.0]
The Conditional Idempotent Generative Networks (CIGN) is a novel approach that expand on Idempotent Generative Networks (IGN) to enable conditional generation。
CIGNは条件付け機構を組み込むことでこの制限に対処し、ユーザーは特定のタイプのデータに対して生成プロセスを制御できる。
論文 参考訳(メタデータ) (2024-06-05T01:31:50Z) - SAFE-RL: Saliency-Aware Counterfactual Explainer for Deep Reinforcement Learning Policies [13.26174103650211]
学習されたポリシーの説明可能性の欠如は、自動運転システムのような安全クリティカルなアプリケーションへの取り込みを妨げる。
対実的(CF)説明は、最近、ブラックボックスディープラーニング(DL)モデルを解釈する能力で有名になった。
そこで本稿では,過去の観測状態の列にまたがる最も影響力のある入力画素を特定するために,サリエンシマップを提案する。
我々は,ADS,Atari Pong,Pacman,Space-invadersゲームなど,多種多様な領域におけるフレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-28T21:47:34Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
テラヘルツ(THz)無線システムに対する拡張現実(XR)体験を最適化するために、新しい共同センシング、通信、人工知能(AI)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T00:39:50Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Explanation-Aware Experience Replay in Rule-Dense Environments [5.161531917413708]
本稿では,説明文ごとにラベル付けされたクラスタに分割することで,経験を整理する手法を提案する。
モジュール型ルールセットと9つの学習タスクと互換性のある離散的かつ連続的なナビゲーション環境を提供する。
説明可能なルールセットを持つ環境では、状態遷移を説明付きクラスタに割り当てることで、ルールベースの説明をケースベースの説明に変換する。
論文 参考訳(メタデータ) (2021-09-29T20:47:06Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - Training Neural Network Controllers Using Control Barrier Functions in
the Presence of Disturbances [9.21721532941863]
本稿では,ニューラルネットワークに基づくフィードバックコントローラの学習に模倣学習を用いることを提案する。
また,外乱下におけるシステムのための新しい高次CBFも開発している。
論文 参考訳(メタデータ) (2020-01-18T18:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。