論文の概要: Conditional Idempotent Generative Networks
- arxiv url: http://arxiv.org/abs/2406.02841v1
- Date: Wed, 5 Jun 2024 01:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:26:58.685912
- Title: Conditional Idempotent Generative Networks
- Title(参考訳): 条件等等化生成ネットワーク
- Authors: Niccolò Ronchetti,
- Abstract要約: The Conditional Idempotent Generative Networks (CIGN) is a novel approach that expand on Idempotent Generative Networks (IGN) to enable conditional generation。
CIGNは条件付け機構を組み込むことでこの制限に対処し、ユーザーは特定のタイプのデータに対して生成プロセスを制御できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Conditional Idempotent Generative Networks (CIGN), a novel approach that expands upon Idempotent Generative Networks (IGN) to enable conditional generation. While IGNs offer efficient single-pass generation, they lack the ability to control the content of the generated data. CIGNs address this limitation by incorporating conditioning mechanisms, allowing users to steer the generation process towards specific types of data. We establish the theoretical foundations for CIGNs, outlining their scope, loss function design, and evaluation metrics. We then present two potential architectures for implementing CIGNs: channel conditioning and filter conditioning. Finally, we discuss experimental results on the MNIST dataset, demonstrating the effectiveness of both approaches. Our findings pave the way for further exploration of CIGNs on larger datasets and with more powerful computing resources to determine the optimal implementation strategy.
- Abstract(参考訳): 本稿では,条件付き生成ネットワーク(CIGN, Conditional Idempotent Generative Networks)を提案する。
IGNは効率的なシングルパス生成を提供するが、生成されたデータの内容を制御する能力は欠如している。
CIGNは条件付け機構を組み込むことでこの制限に対処し、ユーザーは特定のタイプのデータに対して生成プロセスを制御できる。
我々は,CIGNの理論的基盤を確立し,その範囲,損失関数設計,評価指標について概説する。
次に、チャネル条件付けとフィルタ条件付けという、CIGNを実装するための2つの潜在的アーキテクチャを提案する。
最後に,MNISTデータセットの実験結果について考察し,両手法の有効性を実証する。
我々の発見は、より大規模なデータセットとより強力な計算資源でCIGNを探索し、最適な実装戦略を決定するための道を開いた。
関連論文リスト
- Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
本稿では,強力で堅牢なノード埋め込みを抽出するグラフオートエンコーダアーキテクチャを提案する。
生成した埋め込みがグラフの固有値と固有ベクトルと結びついていることを証明する。
提案フレームワークは転送学習とデータ拡張を利用して,大規模なネットワークアライメントを実現する。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
合成スペクトルデータ生成分野におけるGANの応用について報告する。
CWGANは,低データ方式の性能向上を図り,サロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-07-14T16:27:24Z) - GAN-based Tabular Data Generator for Constructing Synopsis in
Approximate Query Processing: Challenges and Solutions [0.0]
Approximate Query Processing (AQP) は、データ(シノプシス)の要約に基づいて、集約されたクエリに近似した回答を提供する技術である。
本研究では,AQPを用いて合成構築を行うことのできる表データ生成におけるGAN(Generative Adversarial Networks)の新規活用について検討する。
以上の結果から,データ駆動システムにおけるAQPの効率と有効性に変化をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-18T05:11:04Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - GFlowCausal: Generative Flow Networks for Causal Discovery [27.51595081346858]
本稿では,GFlowCausalと呼ばれる観測データからDAG(Directed Acyclic Graph)を学習するための新しい手法を提案する。
GFlowCausalは、事前定義された報酬に比例した確率を持つシーケンシャルアクションによって、ハイリワードDAGを生成するための最良のポリシーを学ぶことを目的としている。
合成データセットと実データセットの両方について広範な実験を行い、提案手法が優れていることを示すとともに、大規模環境での良好な性能を示す。
論文 参考訳(メタデータ) (2022-10-15T04:07:39Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z) - MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to
Limited Data Domains [77.46963293257912]
本稿では,特定の対象領域に最も有益である知識をマイニングした生成モデルのための新しい知識伝達手法を提案する。
これは、各事前訓練されたGANの生成分布のどの部分が対象領域に最も近いサンプルを出力しているかを識別するマイカネットワークを用いて行われる。
提案手法はMineGANと呼ばれ,ターゲット画像が少ない領域に効果的に知識を伝達し,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-28T13:10:56Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
GAN(Generative Adversarial Network)は、事前定義された事前分布から現実的なデータを生成することに成功している。
実際には、意味情報はデータから学んだ潜在的な分布によって表現される。
ローカル座標符号化(LCC)を用いたLCCGANモデルを提案する。
論文 参考訳(メタデータ) (2020-07-28T09:17:50Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
GAN(Generative Adversarial Network)は,大規模データ分散のサンプルを作成する上で有効な手法である。
GANはラベル付きトレーニングデータを広く使用せずにディープ表現を学習する適切な方法を提供する。
GANでは、ジェネレータと識別器のネットワークを同時にトレーニングする競合プロセスを通じて生成モデルを推定する。
論文 参考訳(メタデータ) (2020-05-27T05:56:53Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Information Compensation for Deep Conditional Generative Networks [38.054911004694624]
我々は、新しい情報補償接続(IC-Connection)を用いた教師なし条件付きGANのための新しい構造を提案する。
提案したIC-Connectionにより、GANはデコンボリューション操作中に発生する情報損失を補償することができる。
実験結果から,本手法は条件付き生成環境において,最先端のGANと比較して,より不整合性が高いことが示唆された。
論文 参考訳(メタデータ) (2020-01-23T14:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。