論文の概要: Leveraging Video Coding Knowledge for Deep Video Enhancement
- arxiv url: http://arxiv.org/abs/2302.13594v1
- Date: Mon, 27 Feb 2023 09:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 16:13:17.646735
- Title: Leveraging Video Coding Knowledge for Deep Video Enhancement
- Title(参考訳): ディープビデオエンハンスメントのためのビデオ符号化知識の活用
- Authors: Thong Bach, Thuong Nguyen Canh, Van-Quang Nguyen
- Abstract要約: 本研究では,ビデオ圧縮の低遅延構成を利用して,既存の最先端手法である BasicVSR++ を改良する新しいフレームワークを提案する。
我々は,圧縮ビデオの最終品質を高めるために,文脈適応型ビデオ融合手法を取り入れた。
提案手法は,NTIRE22チャレンジにおいてビデオ復元と拡張のためのベンチマークとして評価され,従来の手法と比較して定量的な計測値と視覚的品質の両方の改善が達成されている。
- 参考スコア(独自算出の注目度): 6.746400031322727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in deep learning techniques have significantly improved
the quality of compressed videos. However, previous approaches have not fully
exploited the motion characteristics of compressed videos, such as the drastic
change in motion between video contents and the hierarchical coding structure
of the compressed video. This study proposes a novel framework that leverages
the low-delay configuration of video compression to enhance the existing
state-of-the-art method, BasicVSR++. We incorporate a context-adaptive video
fusion method to enhance the final quality of compressed videos. The proposed
approach has been evaluated in the NTIRE22 challenge, a benchmark for video
restoration and enhancement, and achieved improvements in both quantitative
metrics and visual quality compared to the previous method.
- Abstract(参考訳): 近年のディープラーニング技術の進歩により、圧縮ビデオの品質が大幅に向上した。
しかし、従来の手法では、映像コンテンツ間の動きの劇的な変化や圧縮ビデオの階層的符号化構造など、圧縮ビデオの運動特性を十分に活用していない。
本研究では,映像圧縮の低遅延構成を活用し,既存の最先端手法である basicvsr++ を強化する新しいフレームワークを提案する。
圧縮ビデオの最終品質を高めるために,コンテキスト適応型ビデオ融合手法を組み込んだ。
提案手法は,NTIRE22チャレンジにおいてビデオ復元と拡張のためのベンチマークとして評価され,従来の手法と比較して定量的な計測値と視覚的品質の両方の改善が達成されている。
関連論文リスト
- Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - A Diffusion Model Based Quality Enhancement Method for HEVC Compressed
Video [11.741515336773643]
本研究では,圧縮ビデオの拡散モデルに基づく後処理手法を提案する。
提案手法は,まず圧縮ビデオの特徴ベクトルを推定し,その推定特徴ベクトルを品質向上モデルの事前情報として利用する。
実験の結果,提案手法の品質向上効果は既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T07:29:23Z) - Perceptual Quality Improvement in Videoconferencing using
Keyframes-based GAN [28.773037051085318]
本稿では,ビデオ会議における圧縮アーティファクト削減のための新しいGAN手法を提案する。
まず,圧縮および参照フレームからマルチスケールの特徴を抽出する。
そして、私たちのアーキテクチャは、顔のランドマークに従って、これらの特徴を段階的に組み合わせます。
論文 参考訳(メタデータ) (2023-11-07T16:38:23Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
生成的符号化アプローチは、合理的な速度歪曲トレードオフを持つ有望な代替手段として認識されている。
従来のハイブリッドコーディングフレームワークから生成モデルまで、空間的・時間的領域における歪みの多様さは、圧縮顔画像品質評価(VQA)における大きな課題を提示する。
大規模圧縮顔画像品質評価(CFVQA)データベースを導入し,顔ビデオの知覚的品質と多角化圧縮歪みを体系的に理解するための最初の試みである。
論文 参考訳(メタデータ) (2023-04-14T11:26:09Z) - Valid Information Guidance Network for Compressed Video Quality
Enhancement [10.294638746269298]
本稿では,圧縮ビデオの品質を高めるために,独自のVIG(Valid Information Guidance scheme)を提案する。
提案手法は,圧縮映像品質向上の最先端性能を,精度と効率の観点から達成する。
論文 参考訳(メタデータ) (2023-02-28T05:43:25Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Boosting the Performance of Video Compression Artifact Reduction with
Reference Frame Proposals and Frequency Domain Information [31.053879834073502]
本稿では,既存のマルチフレーム手法の性能向上のための効果的な参照フレーム提案手法を提案する。
実験結果から,MFQE 2.0データセットの忠実度と知覚性能は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-05-31T13:46:11Z) - Encoding in the Dark Grand Challenge: An Overview [60.9261003831389]
低照度映像シーケンスの符号化に関するグランドチャレンジを提案する。
VVCは、エンコーディングに先立って単にビデオソースをデノベートするよりも高いパフォーマンスを達成する。
後処理画像強調法を用いることで、ビデオストリームの品質をさらに向上することができる。
論文 参考訳(メタデータ) (2020-05-07T08:22:56Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。