論文の概要: Plug-and-Play Versatile Compressed Video Enhancement
- arxiv url: http://arxiv.org/abs/2504.15380v1
- Date: Mon, 21 Apr 2025 18:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 01:47:53.660599
- Title: Plug-and-Play Versatile Compressed Video Enhancement
- Title(参考訳): プラグ・アンド・プレイ型ヴァーサタイル圧縮圧縮映像の高精細化
- Authors: Huimin Zeng, Jiacheng Li, Zhiwei Xiong,
- Abstract要約: ビデオ圧縮はファイルのサイズを効果的に削減し、リアルタイムのクラウドコンピューティングを可能にする。
しかし、それは視覚的品質の犠牲となり、下流の視覚モデルの堅牢性に挑戦する。
本稿では,異なる圧縮条件下で動画を適応的に拡張する多言語対応拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 57.62582951699999
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As a widely adopted technique in data transmission, video compression effectively reduces the size of files, making it possible for real-time cloud computing. However, it comes at the cost of visual quality, posing challenges to the robustness of downstream vision models. In this work, we present a versatile codec-aware enhancement framework that reuses codec information to adaptively enhance videos under different compression settings, assisting various downstream vision tasks without introducing computation bottleneck. Specifically, the proposed codec-aware framework consists of a compression-aware adaptation (CAA) network that employs a hierarchical adaptation mechanism to estimate parameters of the frame-wise enhancement network, namely the bitstream-aware enhancement (BAE) network. The BAE network further leverages temporal and spatial priors embedded in the bitstream to effectively improve the quality of compressed input frames. Extensive experimental results demonstrate the superior quality enhancement performance of our framework over existing enhancement methods, as well as its versatility in assisting multiple downstream tasks on compressed videos as a plug-and-play module. Code and models are available at https://huimin-zeng.github.io/PnP-VCVE/.
- Abstract(参考訳): データ転送において広く採用されている技術として、ビデオ圧縮はファイルのサイズを効果的に削減し、リアルタイムのクラウドコンピューティングを可能にする。
しかし、それは視覚的品質の犠牲となり、下流の視覚モデルの堅牢性に挑戦する。
本研究では,コーデック情報を再利用し,異なる圧縮条件下での映像の適応的エンハンスメントを実現する,多機能なコーデック対応拡張フレームワークを提案する。
特に,提案するコーデック・アウェア・アダプティブ・ネットワークは,フレームワイド・エンハンスメント・ネットワーク,すなわちビットストリーム・アウェア・エンハンスメント・ネットワーク(BAE)のパラメータを推定するために階層的アダプティブ・メカニズムを用いた圧縮・アウェア・アダプティブ・ネットワーク(CAA)で構成されている。
BAEネットワークは、ビットストリームに埋め込まれた時間的および空間的先行性を利用して、圧縮された入力フレームの品質を効果的に向上する。
大規模な実験により,既存の拡張手法よりも優れた品質向上性能を示し,プラグイン・アンド・プレイモジュールとして圧縮ビデオ上の複数の下流タスクを支援する汎用性を示した。
コードとモデルはhttps://huimin-zeng.github.io/PnP-VCVE/で公開されている。
関連論文リスト
- Embedding Compression Distortion in Video Coding for Machines [67.97469042910855]
現在、ビデオ伝送は人間の視覚システム(HVS)だけでなく、分析のための機械認識にも役立っている。
本稿では,機械知覚関連歪み表現を抽出し,下流モデルに埋め込む圧縮歪埋め込み(CDRE)フレームワークを提案する。
我々のフレームワークは,実行時間,パラメータ数といったオーバーヘッドを最小限に抑えて,既存のコーデックのレートタスク性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2025-03-27T13:01:53Z) - REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
生成モデルのためのビデオ埋め込み学習について,新しい視点を提示する。
入力ビデオの正確な再生を必要とせず、効果的な埋め込みは視覚的に妥当な再構築に焦点を当てるべきである。
本稿では,従来のエンコーダ・デコーダ・ビデオ埋め込みをエンコーダ・ジェネレータ・フレームワークに置き換えることを提案する。
論文 参考訳(メタデータ) (2025-03-11T17:51:07Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - NU-Class Net: A Novel Approach for Video Quality Enhancement [1.7763979745248648]
本稿では,圧縮コーデックによる圧縮アーチファクトの軽減を目的とした,革新的な深層学習モデルであるNU-Class Netを紹介する。
NU-Class Netを利用することで、ビデオキャプチャノード内のビデオエンコーダは出力品質を低下させ、低ビットレートのビデオを生成することができる。
実験により,低ビットレートでストリーミングされたビデオの知覚品質を高めるためのモデルの有効性が確認された。
論文 参考訳(メタデータ) (2024-01-02T11:46:42Z) - Sandwiched Video Compression: Efficiently Extending the Reach of
Standard Codecs with Neural Wrappers [11.968545394054816]
本稿では,標準的なビデオにニューラルネットワークをラップするビデオ圧縮システムを提案する。
ネットワークは、速度歪み損失関数を最適化するために共同で訓練される。
HEVCと同等品質で30%の改善が見られた。
論文 参考訳(メタデータ) (2023-03-20T22:03:44Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Enhanced Standard Compatible Image Compression Framework based on
Auxiliary Codec Networks [8.440333621142226]
Auxiliary Codec Networks (ACNs) に基づく新しい標準互換画像圧縮フレームワークを提案する。
ACNは、既存の画像劣化操作を模倣するように設計されており、コンパクトな表現ネットワークにより正確な勾配を提供する。
本稿では,JPEGおよび高効率ビデオ符号化(HEVC)標準に基づく提案フレームワークが,既存の画像圧縮アルゴリズムを標準互換性で大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-09-30T15:42:06Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
本稿では,階層型ビデオ圧縮(HLVC)手法を提案する。
我々のHLVCアプローチでは、エンコーダ側とデコーダ側の低品質フレームの圧縮と強化を容易にするため、階層的品質は符号化効率の恩恵を受ける。
論文 参考訳(メタデータ) (2020-03-04T09:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。