LSR: A Light-Weight Super-Resolution Method
- URL: http://arxiv.org/abs/2302.13596v1
- Date: Mon, 27 Feb 2023 09:02:35 GMT
- Title: LSR: A Light-Weight Super-Resolution Method
- Authors: Wei Wang, Xuejing Lei, Yueru Chen, Ming-Sui Lee, C.-C. Jay Kuo
- Abstract summary: LSR predicts the residual image between the interpolated low-resolution (ILR) and high-resolution (HR) images using a self-supervised framework.
It consists of three modules: 1) generation of a pool of rich and diversified representations in the neighborhood of a target pixel via unsupervised learning, 2) selecting a subset from the representation pool that is most relevant to the underlying super-resolution task automatically via supervised learning, 3) predicting the residual of the target pixel via regression.
- Score: 36.14816868964436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A light-weight super-resolution (LSR) method from a single image targeting
mobile applications is proposed in this work. LSR predicts the residual image
between the interpolated low-resolution (ILR) and high-resolution (HR) images
using a self-supervised framework. To lower the computational complexity, LSR
does not adopt the end-to-end optimization deep networks. It consists of three
modules: 1) generation of a pool of rich and diversified representations in the
neighborhood of a target pixel via unsupervised learning, 2) selecting a subset
from the representation pool that is most relevant to the underlying
super-resolution task automatically via supervised learning, 3) predicting the
residual of the target pixel via regression. LSR has low computational
complexity and reasonable model size so that it can be implemented on
mobile/edge platforms conveniently. Besides, it offers better visual quality
than classical exemplar-based methods in terms of PSNR/SSIM measures.
Related papers
- Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - Low-Resolution Self-Attention for Semantic Segmentation [96.81482872022237]
We introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost.
Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution.
We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure.
arXiv Detail & Related papers (2023-10-08T06:10:09Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.