論文の概要: A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition
- arxiv url: http://arxiv.org/abs/2302.13610v1
- Date: Mon, 27 Feb 2023 09:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 16:15:42.932531
- Title: A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition
- Title(参考訳): Few-Shot Name Entity Recognition のためのジョイントコントラスト学習による特徴的セマンティックデカップリング法
- Authors: Guanting Dong and Zechen Wang and Liwen Wang and Daichi Guo and Dayuan
Fu and Yuxiang Wu and Chen Zeng and Xuefeng Li and Tingfeng Hui and Keqing He
and Xinyue Cui and Qixiang Gao and Weiran Xu
- Abstract要約: 名前付きエンティティ認識(NER)は、わずかにラベル付きインスタンスに基づいて名前付きエンティティを識別することを目的としている。
連立コントラスト学習(PSDC)を用いた数発NERのためのプロトタイプセマンティックデカップリング手法を提案する。
2つの数ショットのNERベンチマークによる実験結果から、PSDCは全体の性能において従来のSOTA法よりも一貫して優れていたことが示されている。
- 参考スコア(独自算出の注目度): 24.916377682689955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot named entity recognition (NER) aims at identifying named entities
based on only few labeled instances. Most existing prototype-based sequence
labeling models tend to memorize entity mentions which would be easily confused
by close prototypes. In this paper, we proposed a Prototypical Semantic
Decoupling method via joint Contrastive learning (PSDC) for few-shot NER.
Specifically, we decouple class-specific prototypes and contextual semantic
prototypes by two masking strategies to lead the model to focus on two
different semantic information for inference. Besides, we further introduce
joint contrastive learning objectives to better integrate two kinds of
decoupling information and prevent semantic collapse. Experimental results on
two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the
previous SOTA methods in terms of overall performance. Extensive analysis
further validates the effectiveness and generalization of PSDC.
- Abstract(参考訳): 名前付きエンティティ認識(NER)は、わずかにラベル付きインスタンスに基づいて名前付きエンティティを識別することを目的としている。
既存のプロトタイプベースのシーケンスラベリングモデルの多くは、近接したプロトタイプによって容易に混同されるエンティティ参照を記憶する傾向がある。
本稿では,数発のNERに対して,共同コントラスト学習(PSDC)を用いたプロトタイプセマンティックデカップリング手法を提案する。
具体的には、クラス固有のプロトタイプとコンテキストセマンティクスのプロトタイプを2つのマスキング戦略で分離し、モデルを推論のために2つの異なるセマンティクス情報に集中させる。
さらに,2種類の分離情報の統合と意味的崩壊の防止を図るために,統合コントラスト学習目標も導入する。
2つの数ショットのNERベンチマークによる実験結果から、PSDCは全体の性能において従来のSOTA法よりも一貫して優れていた。
拡張解析はPSDCの有効性と一般化をさらに検証する。
関連論文リスト
- Negative Prototypes Guided Contrastive Learning for WSOD [8.102080369924911]
近年,画像レベルのアノテーションのみを持つ弱監視対象検出(WSOD)が注目されている。
本稿では,Native Prototypes Guided Contrastive Learning Architectureを提案する。
提案手法は最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-04T08:16:26Z) - RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot
Document-Level Relation Extraction [35.246592734300414]
FSDLREのための関係認識型プロトタイプ学習手法を提案する。
提案手法は, 関係プロトタイプを効果的に改良し, タスク固有のNOTAプロトタイプを生成する。
論文 参考訳(メタデータ) (2023-10-24T11:35:23Z) - MProto: Multi-Prototype Network with Denoised Optimal Transport for
Distantly Supervised Named Entity Recognition [75.87566793111066]
本稿では,DS-NERタスクのためのMProtoというノイズロスのプロトタイプネットワークを提案する。
MProtoは、各エンティティタイプを複数のプロトタイプで表現し、クラス内の分散を特徴付ける。
不完全なラベリングからノイズを緩和するために,新しい復号化最適輸送(DOT)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T13:02:34Z) - A Multi-Task Semantic Decomposition Framework with Task-specific
Pre-training for Few-Shot NER [26.008350261239617]
マルチタスク・セマンティック・デコンストラクション・フレームワークを提案する。
本稿では,MLM(Demonstration-based Masked Language Modeling)とクラスコントラスト識別(Class Contrastive Discrimination)の2つの新しい事前学習タスクを紹介する。
下流のメインタスクでは,エンティティ分類のための2つの異なるセマンティック情報の統合を容易にするセマンティックデコンポーザリング手法を用いたマルチタスク共同最適化フレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-28T12:46:21Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
名前付きエンティティ認識(NER)は、アノテーション付きデータが少ない名前付きエンティティを識別することを目的としている。
そこで本研究では,2段階のアプローチを用いて,数発のNERに対処するセミナルスパンベースプロトタイプネットワーク(SpanProto)を提案する。
スパン抽出の段階では、逐次タグを大域境界行列に変換し、モデルが明示的な境界情報に集中できるようにする。
分類に言及するために、原型学習を活用してラベル付きスパンのセマンティック表現をキャプチャし、新しいクラスエンティティへの適応性を向上する。
論文 参考訳(メタデータ) (2022-10-17T12:59:33Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。