論文の概要: RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot
Document-Level Relation Extraction
- arxiv url: http://arxiv.org/abs/2310.15743v1
- Date: Tue, 24 Oct 2023 11:35:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 19:11:02.335802
- Title: RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot
Document-Level Relation Extraction
- Title(参考訳): RAPL:Few-Shotドキュメンテーション-レベル関係抽出のための関係認識型学習手法
- Authors: Shiao Meng, Xuming Hu, Aiwei Liu, Shu'ang Li, Fukun Ma, Yawen Yang,
Lijie Wen
- Abstract要約: FSDLREのための関係認識型プロトタイプ学習手法を提案する。
提案手法は, 関係プロトタイプを効果的に改良し, タスク固有のNOTAプロトタイプを生成する。
- 参考スコア(独自算出の注目度): 35.246592734300414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to identify semantic relations among entities in a document when only a
few labeled documents are available? Few-shot document-level relation
extraction (FSDLRE) is crucial for addressing the pervasive data scarcity
problem in real-world scenarios. Metric-based meta-learning is an effective
framework widely adopted for FSDLRE, which constructs class prototypes for
classification. However, existing works often struggle to obtain class
prototypes with accurate relational semantics: 1) To build prototype for a
target relation type, they aggregate the representations of all entity pairs
holding that relation, while these entity pairs may also hold other relations,
thus disturbing the prototype. 2) They use a set of generic NOTA
(none-of-the-above) prototypes across all tasks, neglecting that the NOTA
semantics differs in tasks with different target relation types. In this paper,
we propose a relation-aware prototype learning method for FSDLRE to strengthen
the relational semantics of prototype representations. By judiciously
leveraging the relation descriptions and realistic NOTA instances as guidance,
our method effectively refines the relation prototypes and generates
task-specific NOTA prototypes. Extensive experiments demonstrate that our
method outperforms state-of-the-art approaches by average 2.61% $F_1$ across
various settings of two FSDLRE benchmarks.
- Abstract(参考訳): ラベル付きドキュメントがわずかにあれば、ドキュメント内のエンティティ間のセマンティックな関係を識別する方法?
実世界のシナリオにおける広範囲なデータ不足問題に対処するためには,FSDLRE (Few-shot document-level relation extract) が重要である。
メトリクスベースのメタラーニングは、分類のためのクラスプロトタイプを構築するFSDLREに広く採用されている効果的なフレームワークである。
しかし、既存の作品はしばしば正確な関係セマンティクスを持つクラスプロトタイプを得るのに苦労している。
1) 対象関係型のプロトタイプを構築するには、その関係を保持するすべてのエンティティペアの表現を集約する一方、これらのエンティティペアは他の関係も保持し、プロトタイプを妨害する可能性がある。
2) ターゲット関係型が異なるタスクではNOTA意味が異なることを無視して,NOTA(None-of-the-above)プロトタイプを全タスクにわたって使用する。
本稿では,FSDLREにおける関係認識型プロトタイプ学習手法を提案する。
本手法は,関係記述や現実的なNOTAインスタンスをガイダンスとして活用することにより,関係のプロトタイプを効果的に改良し,タスク固有のNOTAプロトタイプを生成する。
2つのFSDLREベンチマークの様々な設定において,提案手法が平均2.61%のF_1$で最先端の手法より優れていることを示す。
関連論文リスト
- Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
GRADed Generative Retrieval (GR$2$)というフレームワークを紹介します。
GR$2$は2つの重要なコンポーネントに焦点を当てている。
マルチグレードとバイナリの関連性を持つデータセットの実験は,GR$2$の有効性を示した。
論文 参考訳(メタデータ) (2024-09-27T02:55:53Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
論文 参考訳(メタデータ) (2024-03-12T08:58:07Z) - ProtoEM: A Prototype-Enhanced Matching Framework for Event Relation
Extraction [69.74158631862652]
イベント関係抽出(ERE)は、テキスト中のイベント間の複数の種類の関係を抽出することを目的としている。
既存の手法では、イベント関係を異なるクラスに分類し、これらの関係の本質的な意味を不適切に捉えている。
複数種類の事象関係の連成抽出のためのプロトタイプ強化マッチング(ProtoEM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-22T14:26:06Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition [24.916377682689955]
名前付きエンティティ認識(NER)は、わずかにラベル付きインスタンスに基づいて名前付きエンティティを識別することを目的としている。
連立コントラスト学習(PSDC)を用いた数発NERのためのプロトタイプセマンティックデカップリング手法を提案する。
2つの数ショットのNERベンチマークによる実験結果から、PSDCは全体の性能において従来のSOTA法よりも一貫して優れていたことが示されている。
論文 参考訳(メタデータ) (2023-02-27T09:20:00Z) - A Novel Few-Shot Relation Extraction Pipeline Based on Adaptive
Prototype Fusion [5.636675879040131]
Few-shot Relation extract (FSRE) は、わずかに注釈付きインスタンスで学習することで、目に見えない関係を認識することを目的としている。
本稿では,適応型プロトタイプ融合に基づくFSREタスクのための新しいパイプラインを提案する。
ベンチマークデータセットFewRel 1.0の実験では、最先端の手法に対する我々の手法の大幅な改善が示されている。
論文 参考訳(メタデータ) (2022-10-15T09:44:21Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。