論文の概要: Moderate Adaptive Linear Units (MoLU)
- arxiv url: http://arxiv.org/abs/2302.13696v4
- Date: Mon, 10 Jun 2024 11:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:58:24.484609
- Title: Moderate Adaptive Linear Units (MoLU)
- Title(参考訳): モード適応線形ユニット(MoLU)
- Authors: Hankyul Koh, Joon-hyuk Ko, Wonho Jhe,
- Abstract要約: 深層ニューラルネットワークのための新しい高性能アクティベーション関数であるModrate Adaptive Linear Unit (MoLU)を提案する。
MoLUはシンプルで美しく強力なアクティベーション関数であり、数百のアクティベーション関数の中で優れたメインアクティベーション関数となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new high-performance activation function, Moderate Adaptive Linear Units (MoLU), for the deep neural network. The MoLU is a simple, beautiful and powerful activation function that can be a good main activation function among hundreds of activation functions. Because the MoLU is made up of the elementary functions, not only it is a infinite diffeomorphism (i.e. smooth and infinitely differentiable over whole domains), but also it decreases training time.
- Abstract(参考訳): 深層ニューラルネットワークのための新しい高性能アクティベーション関数であるModrate Adaptive Linear Units (MoLU)を提案する。
MoLUはシンプルで美しく強力なアクティベーション関数であり、数百のアクティベーション関数の中で優れたメインアクティベーション関数となる。
MoLU は基本函数からなるので、無限微分同相(すなわち、領域全体の滑らかかつ無限に微分可能)であるだけでなく、訓練時間も減少する。
関連論文リスト
- Activation function optimization method: Learnable series linear units (LSLUs) [12.089173508371246]
LSLU (Learnable Series Linear Units) と呼ばれる直列学習可能なac-tivation関数を提案する。
この方法は、精度を向上しつつ、ディープラーニングネットワークを単純化する。
CIFAR10, CIFAR100および特定のタスクデータセット(例えばSilkworm)上でのLSLUの性能を評価する。
論文 参考訳(メタデータ) (2024-08-28T11:12:27Z) - Expanded Gating Ranges Improve Activation Functions [0.0]
拡張ArcTanリニアユニット(xATLU)、拡張GELU(xGELU)、拡張SiLU(xSiLU)は、トランスアーキテクチャ内の既存のアクティベーション関数より優れていることがわかった。
また、拡張ゲーティング範囲は1次ゲーティング線形ユニット(GLU)の改善に有望な結果を示すことも示している。
論文 参考訳(メタデータ) (2024-05-25T09:12:17Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - Saturated Non-Monotonic Activation Functions [21.16866749728754]
SGELU, SSiLU, SMishはGELU, SiLU, Mishの負の部分とReLUの正の部分から構成される。
CIFAR-100における画像分類実験の結果,提案するアクティベーション関数は,複数のディープラーニングアーキテクチャにおいて,高い有効性と,最先端のベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-05-12T15:01:06Z) - Empirical study of the modulus as activation function in computer vision
applications [1.5099465160569119]
コンピュータビジョンタスクにおいて提案した関数を用いることで、他の非線形性よりもモデルがより一般化できることが示される。
提案する関数とそのデリバティブの単純さは、TinyMLおよびハードウェアアプリケーションに特に適している。
論文 参考訳(メタデータ) (2023-01-15T00:32:03Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
サブモジュール関数と変種は、多様性とカバレッジを特徴付ける能力を通じて、データ選択と要約のための重要なツールとして登場した。
本稿では,モノトーンおよび非モノトーン部分モジュラー関数のためのフレキシブルニューラルネットワークであるFLEXSUBNETを提案する。
論文 参考訳(メタデータ) (2022-10-20T06:00:45Z) - Growing Cosine Unit: A Novel Oscillatory Activation Function That Can
Speedup Training and Reduce Parameters in Convolutional Neural Networks [0.1529342790344802]
畳み込みニューラルネットワークは多くの社会的に重要で経済的に重要な問題を解くことに成功した。
ディープネットワークのトレーニングを可能にする重要な発見は、Rectified Linear Unit (ReLU) アクティベーション機能の採用であった。
新しい活性化関数 C(z) = z cos z は様々なアーキテクチャ上で Sigmoids, Swish, Mish, ReLU より優れる。
論文 参考訳(メタデータ) (2021-08-30T01:07:05Z) - Neural Function Modules with Sparse Arguments: A Dynamic Approach to
Integrating Information across Layers [84.57980167400513]
Neural Function Modules (NFM)は、ディープラーニングに同じ構造機能を導入することを目的としている。
トップダウンとボトムアップのフィードバックを組み合わせたフィードフォワードネットワークのコンテキストにおける作業のほとんどは、分類の問題に限られている。
私たちの仕事の重要な貢献は、フレキシブルなアルゴリズムで注意、疎結合、トップダウン、ボトムアップのフィードバックを組み合わせることです。
論文 参考訳(メタデータ) (2020-10-15T20:43:17Z) - Continuous Submodular Function Maximization [91.17492610120324]
連続部分モジュラリティ (continuous submodularity) は、幅広い応用を持つ関数のクラスである。
連続的な部分モジュラ最適化の応用は、影響、推論のMAP、フィールドへの推論など多岐にわたる。
論文 参考訳(メタデータ) (2020-06-24T04:37:31Z) - From Sets to Multisets: Provable Variational Inference for Probabilistic
Integer Submodular Models [82.95892656532696]
サブモジュール関数は機械学習やデータマイニングにおいて広く研究されている。
本研究では,整数部分モジュラ函数に対する連続DR-部分モジュラ拡張を提案する。
整数部分モジュラー関数によって定義される新しい確率モデルを定式化する。
論文 参考訳(メタデータ) (2020-06-01T22:20:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。