論文の概要: Moderate Adaptive Linear Units (MoLU)
- arxiv url: http://arxiv.org/abs/2302.13696v7
- Date: Tue, 15 Jul 2025 15:16:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 15:22:27.693249
- Title: Moderate Adaptive Linear Units (MoLU)
- Title(参考訳): モード適応線形ユニット(MoLU)
- Authors: Hankyul Koh, Joon-hyuk Ko, Wonho Jhe,
- Abstract要約: 深層ニューラルネットワークの活性化関数として,f(x)=x times (1+tanh(x))/2。
MoLUは数学的エレガンスと経験的有効性を組み合わせて、予測精度、収束速度、計算効率の点で優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the Moderate Adaptive Linear Unit (MoLU), a novel activation function for deep neural networks, defined analytically as: f(x)=x \times (1+tanh(x))/2. MoLU combines mathematical elegance with empirical effectiveness, exhibiting superior performance in terms of prediction accuracy, convergence speed, and computational efficiency. Due to its C-infinity smoothness, i.e. infinite differentiability and analyticity, MoLU is expected to mitigate issues such as vanishing or exploding gradients, making it suitable for a broad range of architectures and applications, including large language models (LLMs), Neural Ordinary Differential Equations (Neural ODEs), Physics-Informed Neural Networks (PINNs), and Convolutional Neural Networks (CNNs). Empirical evaluations show that MoLU consistently achieves faster convergence and improved final accuracy relative to widely used activation functions such as GeLU, SiLU, and Mish. These properties position MoLU as a promising and robust candidate for general-purpose activation across diverse deep learning paradigms.
- Abstract(参考訳): 深層ニューラルネットワークのための新しい活性化関数であるModerate Adaptive Linear Unit (MoLU) を解析的に f(x)=x \times (1+tanh(x))/2 と定義する。
MoLUは数学的エレガンスと経験的有効性を組み合わせて、予測精度、収束速度、計算効率の点で優れた性能を示す。
C-無限の滑らかさ、すなわち無限の微分可能性と解析性により、MoLUは勾配の消滅や爆発といった問題を緩和し、大規模言語モデル(LLM)、ニューラル正規微分方程式(Neural Ordinary Differential Equations)、物理インフォームドニューラルネットワーク(PINN)、畳み込みニューラルネットワーク(Convolutional Neural Networks、CNN)など幅広いアーキテクチャや応用に適合することが期待されている。
経験的評価により、MoLUはGeLU、SiLU、Mishといった広く使われている活性化関数と比較して、より高速な収束と最終的な精度の向上を実現している。
これらの特性は、MoLUを多種多様なディープラーニングパラダイムにおける汎用的活性化の有望かつ堅牢な候補と位置づけている。
関連論文リスト
- Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics [39.0860823332923]
GoLU は $mathrmGoLU(x) = x, MathrmGompertz(x)$, wheremathrmGompertz(x) = e-e-x$ と定義される新しい自己ゲート活性化関数である。
GoLUの最先端のアクティベーション関数に対する優れたパフォーマンスは、既存のアクティベーション関数に対する堅牢な代替として、GoLUを強調している。
論文 参考訳(メタデータ) (2025-02-05T22:32:22Z) - TeLU Activation Function for Fast and Stable Deep Learning [1.9116784879310025]
双曲型Tangent Exponential Linear Unit(TeLU)は、TeLU(x)=xtanh(exp(x))として定義されるニューラルネットワーク隠れ活性化関数である。
TeLUの設計はキーアクティベーション関数の中核原理に基づいており、強い収束を達成する。
我々の結果は、TeLUが活性化関数の新しい標準を設定する可能性を強調し、ディープニューラルネットワークにおけるより効率的で安定した学習を促進する。
論文 参考訳(メタデータ) (2024-12-28T20:50:08Z) - Activation function optimization method: Learnable series linear units (LSLUs) [12.089173508371246]
LSLU (Learnable Series Linear Units) と呼ばれる直列学習可能なac-tivation関数を提案する。
この方法は、精度を向上しつつ、ディープラーニングネットワークを単純化する。
CIFAR10, CIFAR100および特定のタスクデータセット(例えばSilkworm)上でのLSLUの性能を評価する。
論文 参考訳(メタデータ) (2024-08-28T11:12:27Z) - Expanded Gating Ranges Improve Activation Functions [0.0]
拡張ArcTanリニアユニット(xATLU)、拡張GELU(xGELU)、拡張SiLU(xSiLU)は、トランスアーキテクチャ内の既存のアクティベーション関数より優れていることがわかった。
また、拡張ゲーティング範囲は1次ゲーティング線形ユニット(GLU)の改善に有望な結果を示すことも示している。
論文 参考訳(メタデータ) (2024-05-25T09:12:17Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z) - The limitation of neural nets for approximation and optimization [0.0]
最適化問題における目的関数の近似と最小化のために,ニューラルネットワークを代理モデルとして用いることに関心がある。
本研究は、一般的な非線形最適化テスト問題の目的関数を近似する最適なアクティベーション関数を決定することから始まる。
論文 参考訳(メタデータ) (2023-11-21T00:21:15Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - Saturated Non-Monotonic Activation Functions [21.16866749728754]
SGELU, SSiLU, SMishはGELU, SiLU, Mishの負の部分とReLUの正の部分から構成される。
CIFAR-100における画像分類実験の結果,提案するアクティベーション関数は,複数のディープラーニングアーキテクチャにおいて,高い有効性と,最先端のベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-05-12T15:01:06Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Empirical study of the modulus as activation function in computer vision
applications [1.5099465160569119]
コンピュータビジョンタスクにおいて提案した関数を用いることで、他の非線形性よりもモデルがより一般化できることが示される。
提案する関数とそのデリバティブの単純さは、TinyMLおよびハードウェアアプリケーションに特に適している。
論文 参考訳(メタデータ) (2023-01-15T00:32:03Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
サブモジュール関数と変種は、多様性とカバレッジを特徴付ける能力を通じて、データ選択と要約のための重要なツールとして登場した。
本稿では,モノトーンおよび非モノトーン部分モジュラー関数のためのフレキシブルニューラルネットワークであるFLEXSUBNETを提案する。
論文 参考訳(メタデータ) (2022-10-20T06:00:45Z) - Growing Cosine Unit: A Novel Oscillatory Activation Function That Can
Speedup Training and Reduce Parameters in Convolutional Neural Networks [0.1529342790344802]
畳み込みニューラルネットワークは多くの社会的に重要で経済的に重要な問題を解くことに成功した。
ディープネットワークのトレーニングを可能にする重要な発見は、Rectified Linear Unit (ReLU) アクティベーション機能の採用であった。
新しい活性化関数 C(z) = z cos z は様々なアーキテクチャ上で Sigmoids, Swish, Mish, ReLU より優れる。
論文 参考訳(メタデータ) (2021-08-30T01:07:05Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
reluアクティベーション関数を持つニューラルネットワークは、普遍関数近似が非スムース関数として関数マッピングを学ぶことが示されている。
ICNNと呼ばれる新しいニューラルネットワークアーキテクチャは、凸入力として出力を学習する。
論文 参考訳(メタデータ) (2021-03-31T17:31:16Z) - Neural Spectrahedra and Semidefinite Lifts: Global Convex Optimization
of Polynomial Activation Neural Networks in Fully Polynomial-Time [31.94590517036704]
2次活性化を持つ2層数値ネットワークの完全凸最適化定式化を考案する。
本研究では,全入力データの複雑度とサンプルサイズが半定常的なニューラル・グローバル最適化であることを示した。
提案手法は, 標準バックプロパゲーション法に比べ, テスト精度が大幅に向上した。
論文 参考訳(メタデータ) (2021-01-07T08:43:01Z) - Neural Function Modules with Sparse Arguments: A Dynamic Approach to
Integrating Information across Layers [84.57980167400513]
Neural Function Modules (NFM)は、ディープラーニングに同じ構造機能を導入することを目的としている。
トップダウンとボトムアップのフィードバックを組み合わせたフィードフォワードネットワークのコンテキストにおける作業のほとんどは、分類の問題に限られている。
私たちの仕事の重要な貢献は、フレキシブルなアルゴリズムで注意、疎結合、トップダウン、ボトムアップのフィードバックを組み合わせることです。
論文 参考訳(メタデータ) (2020-10-15T20:43:17Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Continuous Submodular Function Maximization [91.17492610120324]
連続部分モジュラリティ (continuous submodularity) は、幅広い応用を持つ関数のクラスである。
連続的な部分モジュラ最適化の応用は、影響、推論のMAP、フィールドへの推論など多岐にわたる。
論文 参考訳(メタデータ) (2020-06-24T04:37:31Z) - From Sets to Multisets: Provable Variational Inference for Probabilistic
Integer Submodular Models [82.95892656532696]
サブモジュール関数は機械学習やデータマイニングにおいて広く研究されている。
本研究では,整数部分モジュラ函数に対する連続DR-部分モジュラ拡張を提案する。
整数部分モジュラー関数によって定義される新しい確率モデルを定式化する。
論文 参考訳(メタデータ) (2020-06-01T22:20:45Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。