Robust Robot Planning for Human-Robot Collaboration
- URL: http://arxiv.org/abs/2302.13916v1
- Date: Mon, 27 Feb 2023 16:02:48 GMT
- Title: Robust Robot Planning for Human-Robot Collaboration
- Authors: Yang You, Vincent Thomas, Francis Colas, Rachid Alami, Olivier Buffet
- Abstract summary: In human-robot collaboration, the objectives of the human are often unknown to the robot.
We propose an approach to automatically generate an uncertain human behavior (a policy) for each given objective function.
We also propose a robot planning algorithm that is robust to the above-mentioned uncertainties.
- Score: 11.609195090422514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human-robot collaboration, the objectives of the human are often unknown
to the robot. Moreover, even assuming a known objective, the human behavior is
also uncertain. In order to plan a robust robot behavior, a key preliminary
question is then: How to derive realistic human behaviors given a known
objective? A major issue is that such a human behavior should itself account
for the robot behavior, otherwise collaboration cannot happen. In this paper,
we rely on Markov decision models, representing the uncertainty over the human
objective as a probability distribution over a finite set of objective
functions (inducing a distribution over human behaviors). Based on this, we
propose two contributions: 1) an approach to automatically generate an
uncertain human behavior (a policy) for each given objective function while
accounting for possible robot behaviors; and 2) a robot planning algorithm that
is robust to the above-mentioned uncertainties and relies on solving a
partially observable Markov decision process (POMDP) obtained by reasoning on a
distribution over human behaviors. A co-working scenario allows conducting
experiments and presenting qualitative and quantitative results to evaluate our
approach.
Related papers
- An Epistemic Human-Aware Task Planner which Anticipates Human Beliefs and Decisions [8.309981857034902]
The aim is to build a robot policy that accounts for uncontrollable human behaviors.
We propose a novel planning framework and build a solver based on AND-OR search.
Preliminary experiments in two domains, one novel and one adapted, demonstrate the effectiveness of the framework.
arXiv Detail & Related papers (2024-09-27T08:27:36Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
We consider the human-aware task planning problem where a human-robot team is given a shared task with a known objective to achieve.
Recent approaches tackle it by modeling it as a team of independent, rational agents, where the robot plans for both agents' (shared) tasks.
We describe a novel approach to solve such problems, which models and uses execution-time observability conventions.
arXiv Detail & Related papers (2022-10-17T09:21:00Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
arXiv Detail & Related papers (2022-10-06T19:23:25Z) - Two ways to make your robot proactive: reasoning about human intentions,
or reasoning about possible futures [69.03494351066846]
We investigate two ways to make robots proactive.
One way is to recognize humans' intentions and to act to fulfill them, like opening the door that you are about to cross.
The other way is to reason about possible future threats or opportunities and to act to prevent or to foster them.
arXiv Detail & Related papers (2022-05-11T13:33:14Z) - AAAI SSS-22 Symposium on Closing the Assessment Loop: Communicating
Proficiency and Intent in Human-Robot Teaming [4.787322716745613]
How should a robot convey predicted ability on a new task?
How should a robot adapt its proficiency criteria based on human intentions and values?
There are no agreed upon standards for evaluating proficiency and intent-based interactions.
arXiv Detail & Related papers (2022-04-05T18:28:01Z) - A Neurorobotics Approach to Behaviour Selection based on Human Activity
Recognition [0.0]
Behaviour selection has been an active research topic for robotics, in particular in the field of human-robot interaction.
Most approaches to date consist of deterministic associations between the recognised activities and the robot behaviours.
This paper presents a neurorobotics approach based on computational models that resemble neurophysiological aspects of living beings.
arXiv Detail & Related papers (2021-07-27T01:25:58Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.