Field Theory and The Sum-of-Squares for Quantum Systems
- URL: http://arxiv.org/abs/2302.14006v1
- Date: Mon, 27 Feb 2023 17:50:59 GMT
- Title: Field Theory and The Sum-of-Squares for Quantum Systems
- Authors: M. B. Hastings
- Abstract summary: This is a collection of various result and notes, addressing the sum-of-squares hierarchy for spin and fermion systems.
We consider the difficulty of approximating the ground state energy of the Sachdev-Ye-Kitaev (SYK) model using other methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is a collection of various result and notes, addressing the
sum-of-squares hierarchy for spin and fermion systems using some ideas from
quantum field theory, including higher order perturbation theory, critical
phenomena, nonlocal coupling in time, and auxiliary field Monte Carlo. This
paper should be seen as a sequel to Refs. 1,2. Additionally in this paper, we
consider the difficulty of approximating the ground state energy of the
Sachdev-Ye-Kitaev (SYK) model using other methods. We provide limitations on
the power of the Lanczos method, starting with a Gausian wavefunction, and on
the power of a sum of Gaussian wavefunctions (in this case under an
assumption).
Related papers
- Geometric and General Relativistic Techniques for Non-relativistic Quantum Systems [0.0]
This thesis explores the application of differential geometric and general relativistic techniques to deepen our understanding of quantum mechanical systems.
First, we examine Unruh radiation in the context of an accelerated two-state atom perturbation, determining transition for a variety of accelerated trajectories via first-order theory.
Next, we investigate the quantum Hall effect in a spherical geometry using the Dirac operator for non-interacting fermions in a background magnetic field generated by a Wu-Yang monopole.
arXiv Detail & Related papers (2025-02-18T16:27:29Z) - Probing topological matter and fermion dynamics on a neutral-atom quantum computer [27.84599956781646]
We realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays.
Results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry, and high-energy physics.
arXiv Detail & Related papers (2025-01-30T18:32:23Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Bootstrapping entanglement in quantum spin systems [0.06554326244334867]
We employ the bootstrap method to determine the expectation values in quantum many-body systems.
We then use these values to assess the entanglement content of the system.
We show that this approach offers not only a new computational methodology but also a comprehensive view of both bipartite and multipartite entanglement properties.
arXiv Detail & Related papers (2023-10-25T09:45:17Z) - Quantum Spin Systems [0.0]
This work provides an overview of gapped quantum spin systems, including concepts, techniques, properties, and results.
The basic framework and objects of interest for quantum spin systems are introduced, and the main ideas behind methods for proving spectral gaps for frustration-free models are outlined.
arXiv Detail & Related papers (2023-08-15T15:52:55Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - The foundations of quantum theory and its possible generalizations [0.0]
Possible generalizations of quantum theory permitting to describe in a unique way the development of the quantum system and the measurement process are discussed.
The application of tachyonic field to overcome divergences arising in this equation is analyzed.
arXiv Detail & Related papers (2021-03-09T11:44:48Z) - Quantum Polar Duality and the Symplectic Camel: a Geometric Approach to
Quantization [0.0]
We study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta.
We show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions.
We discuss the Hardy uncertainty principle and the less-known Donoho--Stark principle from the point of view of quantum polarity.
arXiv Detail & Related papers (2020-09-22T16:55:28Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.