Uncertainty Quantification for Image-based Traffic Prediction across
Cities
- URL: http://arxiv.org/abs/2308.06129v1
- Date: Fri, 11 Aug 2023 13:35:52 GMT
- Title: Uncertainty Quantification for Image-based Traffic Prediction across
Cities
- Authors: Alexander Timans, Nina Wiedemann, Nishant Kumar, Ye Hong, Martin
Raubal
- Abstract summary: Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
- Score: 63.136794104678025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the strong predictive performance of deep learning models for traffic
prediction, their widespread deployment in real-world intelligent
transportation systems has been restrained by a lack of interpretability.
Uncertainty quantification (UQ) methods provide an approach to induce
probabilistic reasoning, improve decision-making and enhance model deployment
potential. To gain a comprehensive picture of the usefulness of existing UQ
methods for traffic prediction and the relation between obtained uncertainties
and city-wide traffic dynamics, we investigate their application to a
large-scale image-based traffic dataset spanning multiple cities and time
periods. We compare two epistemic and two aleatoric UQ methods on both temporal
and spatio-temporal transfer tasks, and find that meaningful uncertainty
estimates can be recovered. We further demonstrate how uncertainty estimates
can be employed for unsupervised outlier detection on changes in city traffic
dynamics. We find that our approach can capture both temporal and spatial
effects on traffic behaviour in a representative case study for the city of
Moscow. Our work presents a further step towards boosting uncertainty awareness
in traffic prediction tasks, and aims to highlight the value contribution of UQ
methods to a better understanding of city traffic dynamics.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-23T14:35:54Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios [0.0]
We explore various loss functions inspired by heavy tail analysis and imbalanced classification problems to address this issue.
We discover that when optimizing for Mean Absolute Error (MAE), the MAE-Focal Loss function stands out as the most effective.
This research enhances deep learning models' capabilities in forecasting sudden speed changes due to congestion.
arXiv Detail & Related papers (2023-08-29T17:44:02Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Towards Good Practices of U-Net for Traffic Forecasting [16.919515280128472]
We consider the forecasting traffic problem as a future frame prediction task with relatively weak temporal dependencies.
We propose a roadmap generation method to make the predicted traffic flows more rational.
We use a fine-tuning strategy based on the validation set to prevent overfitting, which effectively improves the prediction results.
arXiv Detail & Related papers (2020-12-04T13:54:49Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
arXiv Detail & Related papers (2020-02-14T16:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.