論文の概要: Interpretable and Intervenable Ultrasonography-based Machine Learning
Models for Pediatric Appendicitis
- arxiv url: http://arxiv.org/abs/2302.14460v1
- Date: Tue, 28 Feb 2023 10:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 17:00:55.325903
- Title: Interpretable and Intervenable Ultrasonography-based Machine Learning
Models for Pediatric Appendicitis
- Title(参考訳): 小児虫垂炎に対するインタープリタブル・インターベンタブル超音波ベース機械学習モデル
- Authors: Ri\v{c}ards Marcinkevi\v{c}s, Patricia Reis Wolfertstetter, Ugne
Klimiene, Ece Ozkan, Kieran Chin-Cheong, Alyssia Paschke, Julia Zerres,
Markus Denzinger, David Niederberger, Sven Wellmann, Christian Knorr, Julia
E. Vogt
- Abstract要約: 虫垂炎は小児腹部手術の最も多い原因の一つである。
虫垂炎の診断支援システム : 臨床・検査・スコアリング・CTデータを中心に
超音波画像を用いた虫垂炎の診断・管理・重症度予測のための解釈可能な機械学習モデルを開発した。
- 参考スコア(独自算出の注目度): 5.8807145550221716
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Appendicitis is among the most frequent reasons for pediatric abdominal
surgeries. With recent advances in machine learning, data-driven decision
support could help clinicians diagnose and manage patients while reducing the
number of non-critical surgeries. Previous decision support systems for
appendicitis focused on clinical, laboratory, scoring and computed tomography
data, mainly ignoring abdominal ultrasound, a noninvasive and readily available
diagnostic modality. To this end, we developed and validated interpretable
machine learning models for predicting the diagnosis, management and severity
of suspected appendicitis using ultrasound images. Our models were trained on a
dataset comprising 579 pediatric patients with 1709 ultrasound images
accompanied by clinical and laboratory data. Our methodological contribution is
the generalization of concept bottleneck models to prediction problems with
multiple views and incomplete concept sets. Notably, such models lend
themselves to interpretation and interaction via high-level concepts
understandable to clinicians without sacrificing performance or requiring
time-consuming image annotation when deployed.
- Abstract(参考訳): 虫垂炎は小児腹部手術の最も多い原因の一つである。
機械学習の最近の進歩により、データ駆動意思決定サポートは、患者を診断し管理し、非クリティカルな手術の数を減らすのに役立つ。
虫垂炎の診断支援システムは, 腹部超音波を主に無視し, 臨床, 検査, 採点, およびCTデータに重点を置いていた。
そこで我々は,超音波画像を用いた虫垂炎の診断,管理,重症度を予測するための解釈可能な機械学習モデルを開発した。
対象は小児579例, 超音波画像1709例, 臨床・臨床データ, 検査データであった。
我々の方法論的貢献は,複数の視点と不完全概念集合を用いた予測問題に対する概念ボトルネックモデルの一般化である。
特に、そのようなモデルは、パフォーマンスを犠牲にしたり、デプロイ時に時間を要する画像アノテーションを必要とせずに、臨床医に理解可能な高レベルな概念による解釈と相互作用に役立ちます。
関連論文リスト
- Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans [2.900410045439515]
放射線医の間では, 内皮-皮下脂肪比は, ITBとCDの鑑別における代用バイオマーカーとして認識されている。
本稿では,この比率計算を自動化するために,皮下脂肪の自動分離のための新しい2次元画像コンピュータビジョンアルゴリズムを提案する。
ITB, CD, 正常患者のサンプルを用いて, CTEスキャンのデータセットを用いてResNet10モデルを訓練し, 75%の精度を得た。
論文 参考訳(メタデータ) (2024-10-23T17:05:27Z) - Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
本稿では,Glasgow Coma Scale と Age の3次元マルチタスク画像モデルを提案する。
提案手法は現状のベースライン画像モデルより優れており,CTスキャンのみを入力として用いた4名の脳神経科医と比較してICH予後に優れていた。
論文 参考訳(メタデータ) (2024-08-16T14:56:17Z) - Goal-conditioned reinforcement learning for ultrasound navigation guidance [4.648318344224063]
目標条件強化学習(G)としてのコントラスト学習に基づく新しい超音波ナビゲーション支援手法を提案する。
我々は,新しいコントラスト的患者法 (CPB) とデータ拡張型コントラスト的損失を用いて,従来の枠組みを拡張した。
提案法は, 789人の大容量データセットを用いて開発され, 平均誤差は6.56mm, 9.36°であった。
論文 参考訳(メタデータ) (2024-05-02T16:01:58Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
頭頸部腫瘍の予後を予測するために,深層マルチタスクロジスティック回帰(MTLR),コックス比重ハザード(CoxPH),CNNモデルを組み込んだマルチモーダルネットワークを提案する。
提案手法は,HECKTORテストセットのC-インデックス0.72を達成し,HECKTORチャレンジの予後タスクにおける第1位を救った。
論文 参考訳(メタデータ) (2022-02-25T07:50:59Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
まず、個別のタスク固有のモデルのセットをトレーニングするパイプラインアプローチを提案する。
次に、標準モデルの集合戦略とは対照的に、その融合について検討する。
我々の融合アプローチは、標準モデルのアンサンブルに比べてAUCのスコアを最大0.04向上させる。
論文 参考訳(メタデータ) (2021-12-01T13:56:27Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。