論文の概要: LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching
- arxiv url: http://arxiv.org/abs/2306.11925v3
- Date: Sat, 18 Nov 2023 15:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 18:58:45.110739
- Title: LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching
- Title(参考訳): LVM-Med:2次グラフマッチングによる医用イメージングのための大規模自己スーパービジョンモデル学習
- Authors: Duy M. H. Nguyen, Hoang Nguyen, Nghiem T. Diep, Tan N. Pham, Tri Cao,
Binh T. Nguyen, Paul Swoboda, Nhat Ho, Shadi Albarqouni, Pengtao Xie, Daniel
Sonntag, Mathias Niepert
- Abstract要約: LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
- 参考スコア(独自算出の注目度): 59.01894976615714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining large pre-trained models that can be fine-tuned to new tasks with
limited annotated samples has remained an open challenge for medical imaging
data. While pre-trained deep networks on ImageNet and vision-language
foundation models trained on web-scale data are prevailing approaches, their
effectiveness on medical tasks is limited due to the significant domain shift
between natural and medical images. To bridge this gap, we introduce LVM-Med,
the first family of deep networks trained on large-scale medical datasets. We
have collected approximately 1.3 million medical images from 55 publicly
available datasets, covering a large number of organs and modalities such as
CT, MRI, X-ray, and Ultrasound. We benchmark several state-of-the-art
self-supervised algorithms on this dataset and propose a novel self-supervised
contrastive learning algorithm using a graph-matching formulation. The proposed
approach makes three contributions: (i) it integrates prior pair-wise image
similarity metrics based on local and global information; (ii) it captures the
structural constraints of feature embeddings through a loss function
constructed via a combinatorial graph-matching objective; and (iii) it can be
trained efficiently end-to-end using modern gradient-estimation techniques for
black-box solvers. We thoroughly evaluate the proposed LVM-Med on 15 downstream
medical tasks ranging from segmentation and classification to object detection,
and both for the in and out-of-distribution settings. LVM-Med empirically
outperforms a number of state-of-the-art supervised, self-supervised, and
foundation models. For challenging tasks such as Brain Tumor Classification or
Diabetic Retinopathy Grading, LVM-Med improves previous vision-language models
trained on 1 billion masks by 6-7% while using only a ResNet-50.
- Abstract(参考訳): 注釈付きサンプルを限定した新しいタスクに微調整できる大規模な事前訓練モデルを持つことは、医療画像データにとってオープンな課題である。
ImageNetの事前訓練されたディープネットワークとWebスケールデータで訓練されたビジョン言語基盤モデルが一般的であるが、天然画像と医用画像のドメインシフトが大きいため、医療タスクにおけるそれらの効果は限られている。
このギャップを埋めるために,大規模医療データセットでトレーニングされた最初のディープネットワークであるlmm-medを紹介する。
我々は、55の公開データセットから約130万の医療画像を収集し、CT、MRI、X線、超音波などの多数の臓器とモダリティをカバーした。
このデータセット上で,最先端の自己教師付きアルゴリズムをベンチマークし,グラフマッチングを用いた新しい自己教師付きコントラスト学習アルゴリズムを提案する。
提案するアプローチには3つの貢献がある。
(i)地域情報及びグローバル情報に基づく先行的な対向画像類似度指標を統合する。
(ii)組合せグラフマッチング目的によって構築された損失関数を通して特徴埋め込みの構造的制約を捉え、
(iii)ブラックボックスソルバに対する現代の勾配推定手法を用いて、エンドツーエンドを効率的に訓練することができる。
提案手法は,セグメンテーションや分類,オブジェクト検出,分布内および分布外の設定など15の下流医療タスクにおいて,提案手法を徹底的に評価した。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
脳腫瘍分類や糖尿病網膜症グラディングといった課題に対して、LVM-MedはResNet-50のみを使用しながら、10億のマスクでトレーニングされた以前の視覚言語モデルを6~7%改善する。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
医用画像の深層学習は、診断ミスのリスクを最小限に抑え、放射線医の作業量を減らし、診断を加速する可能性がある。
このようなディープラーニングモデルのトレーニングには,すべてのトレーニングサンプルに対するアノテーションを備えた,大規模かつ正確なデータセットが必要です。
この課題に対処するために、ディープラーニングモデルは、自己教師付き学習の分野からのメソッドを使用してアノテーションなしで、大規模な画像データセット上で事前トレーニングすることができる。
論文 参考訳(メタデータ) (2023-08-12T11:31:01Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Pick the Best Pre-trained Model: Towards Transferability Estimation for
Medical Image Segmentation [20.03177073703528]
転送学習は、難しい医用画像分割タスクのために、ディープニューラルネットワークをトレーニングする上で重要なテクニックである。
医用画像セグメンテーションのための新しい転送可能性推定法を提案する。
医用画像のセグメンテーションにおける転送可能性推定のアルゴリズムを網羅した手法を提案する。
論文 参考訳(メタデータ) (2023-07-22T01:58:18Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Interpretable and synergistic deep learning for visual explanation and
statistical estimations of segmentation of disease features from medical
images [0.0]
医学画像からの病因分類やセグメンテーションのための深層学習(DL)モデルは、無関係な自然界画像からの伝達学習(TL)を用いて、ますます訓練されている。
TL後バイナリセグメンテーションに広く用いられているDLアーキテクチャの比較,厳密な統計的解析,および比較について報告する。
TIIおよびLMIモデル、コード、10,000以上の医療画像の無料GitHubリポジトリと、この研究からのGrad-CAM出力は、高度な計算医学の出発点として利用できる。
論文 参考訳(メタデータ) (2020-11-11T14:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。