Assessing Lesion Segmentation Bias of Neural Networks on Motion
Corrupted Brain MRI
- URL: http://arxiv.org/abs/2010.06027v1
- Date: Mon, 12 Oct 2020 21:06:40 GMT
- Title: Assessing Lesion Segmentation Bias of Neural Networks on Motion
Corrupted Brain MRI
- Authors: Tejas Sudharshan Mathai, Yi Wang, Nathan Cross
- Abstract summary: We quantify the impact that different levels of motion artifacts have on the performance of neural networks engaged in a lesion segmentation task.
Our results suggest that a network trained using curriculum learning is effective at compensating for different levels of motion artifacts.
- Score: 3.9694334747397484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patient motion during the magnetic resonance imaging (MRI) acquisition
process results in motion artifacts, which limits the ability of radiologists
to provide a quantitative assessment of a condition visualized. Often times,
radiologists either "see through" the artifacts with reduced diagnostic
confidence, or the MR scans are rejected and patients are asked to be recalled
and re-scanned. Presently, there are many published approaches that focus on
MRI artifact detection and correction. However, the key question of the bias
exhibited by these algorithms on motion corrupted MRI images is still
unanswered. In this paper, we seek to quantify the bias in terms of the impact
that different levels of motion artifacts have on the performance of neural
networks engaged in a lesion segmentation task. Additionally, we explore the
effect of a different learning strategy, curriculum learning, on the
segmentation performance. Our results suggest that a network trained using
curriculum learning is effective at compensating for different levels of motion
artifacts, and improved the segmentation performance by ~9%-15% (p < 0.05) when
compared against a conventional shuffled learning strategy on the same motion
data. Within each motion category, it either improved or maintained the dice
score. To the best of our knowledge, we are the first to quantitatively assess
the segmentation bias on various levels of motion artifacts present in a brain
MRI image.
Related papers
- IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations [2.2265038612930663]
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times.
Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results.
We present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs)
Our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
arXiv Detail & Related papers (2024-07-03T10:14:33Z) - Motion-Informed Deep Learning for Brain MR Image Reconstruction Framework [7.639405634241267]
Motion is estimated to be present in approximately 30% of clinical MRI scans.
Deep learning algorithms have been demonstrated to be effective for both the image reconstruction task and the motion correction task.
We propose a novel method to simultaneously accelerate imaging and correct motion.
arXiv Detail & Related papers (2024-05-28T02:16:35Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Estimating Head Motion from MR-Images [0.0]
Head motion is an omnipresent confounder of magnetic resonance image (MRI) analyses.
We introduce a deep learning method to predict in-scanner head motion directly from T1-weighted (T1w), T2-weighted (T2w) and fluid-attenuated inversion recovery (FLAIR) images.
arXiv Detail & Related papers (2023-02-28T11:03:08Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.