Can We Use Diffusion Probabilistic Models for 3D Motion Prediction?
- URL: http://arxiv.org/abs/2302.14503v1
- Date: Tue, 28 Feb 2023 11:34:55 GMT
- Title: Can We Use Diffusion Probabilistic Models for 3D Motion Prediction?
- Authors: Hyemin Ahn, Esteve Valls Mascaro, Dongheui Lee
- Abstract summary: This paper presents a study of employing diffusion probabilistic models to predict future 3D human motion from the previously observed motion.
Based on the Human 3.6M and HumanEva-I datasets, our results show that diffusion probabilistic models are competitive for both single (deterministic) and multiple (stochastic) 3D motion prediction tasks.
- Score: 10.808563617061846
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: After many researchers observed fruitfulness from the recent diffusion
probabilistic model, its effectiveness in image generation is actively studied
these days. In this paper, our objective is to evaluate the potential of
diffusion probabilistic models for 3D human motion-related tasks. To this end,
this paper presents a study of employing diffusion probabilistic models to
predict future 3D human motion(s) from the previously observed motion. Based on
the Human 3.6M and HumanEva-I datasets, our results show that diffusion
probabilistic models are competitive for both single (deterministic) and
multiple (stochastic) 3D motion prediction tasks, after finishing a single
training process. In addition, we find out that diffusion probabilistic models
can offer an attractive compromise, since they can strike the right balance
between the likelihood and diversity of the predicted future motions. Our code
is publicly available on the project website:
https://sites.google.com/view/diffusion-motion-prediction.
Related papers
- Nonisotropic Gaussian Diffusion for Realistic 3D Human Motion Prediction [36.0214360692653]
SkeletonDiffusion is a latent diffusion model that embeds an explicit inductive bias on the human body.
It consistently generates realistic predictions while avoiding artifacts such as limb distortion.
It sets a new benchmark on three real-world datasets.
arXiv Detail & Related papers (2025-01-10T15:13:43Z) - DiffHPE: Robust, Coherent 3D Human Pose Lifting with Diffusion [54.0238087499699]
We show that diffusion models enhance the accuracy, robustness, and coherence of human pose estimations.
We introduce DiffHPE, a novel strategy for harnessing diffusion models in 3D-HPE.
Our findings indicate that while standalone diffusion models provide commendable performance, their accuracy is even better in combination with supervised models.
arXiv Detail & Related papers (2023-09-04T12:54:10Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Human Joint Kinematics Diffusion-Refinement for Stochastic Motion
Prediction [22.354538952573158]
MotionDiff is a diffusion probabilistic model to treat the kinematics of human joints as heated particles.
MotionDiff consists of two parts: a spatial-temporal transformer-based diffusion network to generate diverse yet plausible motions, and a graph convolutional network to further refine the outputs.
arXiv Detail & Related papers (2022-10-12T07:38:33Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Learning to Predict Diverse Human Motions from a Single Image via
Mixture Density Networks [9.06677862854201]
We propose a novel approach to predict future human motions from a single image, with mixture density networks (MDN) modeling.
Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses.
Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition.
arXiv Detail & Related papers (2021-09-13T08:49:33Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - 3D Human motion anticipation and classification [8.069283749930594]
We propose a novel sequence-to-sequence model for human motion prediction and feature learning.
Our model learns to predict multiple future sequences of human poses from the same input sequence.
We show that it takes less than half the number of epochs to train an activity recognition network by using the feature learned from the discriminator.
arXiv Detail & Related papers (2020-12-31T00:19:39Z) - Adversarial Generative Grammars for Human Activity Prediction [141.43526239537502]
We propose an adversarial generative grammar model for future prediction.
Our grammar is designed so that it can learn production rules from the data distribution.
Being able to select multiple production rules during inference leads to different predicted outcomes.
arXiv Detail & Related papers (2020-08-11T17:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.