論文の概要: Meta-Learning with Adaptive Weighted Loss for Imbalanced Cold-Start
Recommendation
- arxiv url: http://arxiv.org/abs/2302.14640v2
- Date: Mon, 21 Aug 2023 08:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 01:37:39.940459
- Title: Meta-Learning with Adaptive Weighted Loss for Imbalanced Cold-Start
Recommendation
- Title(参考訳): 不均衡なコールドスタート勧告に対する適応重み付きメタラーニング
- Authors: Minchang Kim, Yongjin Yang, Jung Hyun Ryu, Taesup Kim
- Abstract要約: 本稿では,勾配に基づくメタラーニングに基づく新しいシーケンシャルレコメンデーションフレームワークを提案する。
私たちの仕事は、コールドスタートシーケンシャルなレコメンデーションシナリオにおいて、不均衡な評価の影響に最初に取り組みます。
- 参考スコア(独自算出の注目度): 4.379304291229695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommenders have made great strides in capturing a user's
preferences. Nevertheless, the cold-start recommendation remains a fundamental
challenge as they typically involve limited user-item interactions for
personalization. Recently, gradient-based meta-learning approaches have emerged
in the sequential recommendation field due to their fast adaptation and
easy-to-integrate abilities. The meta-learning algorithms formulate the
cold-start recommendation as a few-shot learning problem, where each user is
represented as a task to be adapted. While meta-learning algorithms generally
assume that task-wise samples are evenly distributed over classes or values,
user-item interactions in real-world applications do not conform to such a
distribution (e.g., watching favorite videos multiple times, leaving only
positive ratings without any negative ones). Consequently, imbalanced user
feedback, which accounts for the majority of task training data, may dominate
the user adaptation process and prevent meta-learning algorithms from learning
meaningful meta-knowledge for personalized recommendations. To alleviate this
limitation, we propose a novel sequential recommendation framework based on
gradient-based meta-learning that captures the imbalanced rating distribution
of each user and computes adaptive loss for user-specific learning. Our work is
the first to tackle the impact of imbalanced ratings in cold-start sequential
recommendation scenarios. Through extensive experiments conducted on real-world
datasets, we demonstrate the effectiveness of our framework.
- Abstract(参考訳): 逐次的なレコメンデーションは、ユーザの好みをキャプチャする上で大きな進歩を遂げています。
それでも、コールドスタート推奨は、パーソナライズのためのユーザーとイテムのやりとりが制限されることが多いため、基本的な課題である。
近年,グラデーションに基づくメタラーニング手法が,適応の速さと統合性が容易であることから,逐次的レコメンデーション分野に登場している。
メタ学習アルゴリズムは、冷間開始推奨を数発の学習問題として定式化し、各ユーザが適応すべきタスクとして表現する。
メタラーニングアルゴリズムは一般に、タスクワイドのサンプルはクラスや値に均等に分散されていると仮定するが、現実世界のアプリケーションにおけるユーザー・イテムの相互作用はそのような分布に従わない(例えば、お気に入りのビデオを何回も視聴し、ネガティブな評価をせずに肯定的な評価を残す)。
その結果、タスクトレーニングデータの大部分を占める不均衡なユーザフィードバックが、ユーザ適応プロセスを支配し、パーソナライズされたレコメンデーションのためにメタ学習アルゴリズムが意味のあるメタ知識を学習するのを防ぐことができる。
この制限を緩和するために,各ユーザの不均衡な評価分布を捉え,ユーザ固有の学習における適応的損失を計算する,勾配に基づくメタ学習に基づく新しい逐次推奨フレームワークを提案する。
私たちの仕事は、コールドスタートシーケンシャルなレコメンデーションシナリオにおける不均衡な評価の影響に最初に取り組みます。
実世界のデータセット上で行った広範囲な実験を通じて,このフレームワークの有効性を実証する。
関連論文リスト
- RESUS: Warm-Up Cold Users via Meta-Learning Residual User Preferences in
CTR Prediction [14.807495564177252]
コールドユーザーに対するCTR(Click-Through Rate)予測は、レコメンデーションシステムにおいて難しい課題である。
本稿では,グローバルな嗜好知識の学習を,個々のユーザの残留嗜好の学習から切り離す,RESUSという新しい,効率的なアプローチを提案する。
本手法は, コールドユーザに対するCTR予測精度の向上に有効であり, 各種最先端手法と比較して有効である。
論文 参考訳(メタデータ) (2022-10-28T11:57:58Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Comprehensive Fair Meta-learned Recommender System [39.04926584648665]
我々は、メタ学習モデルの公平性を確保するために、CLOVERという、総合的な公正なメタ学習フレームワークを提案する。
我々のフレームワークは、異なるメタ学習レコメンデータシステムに適用可能な、汎用的なトレーニングパラダイムを提供する。
論文 参考訳(メタデータ) (2022-06-09T22:48:35Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
本研究では,逐次推薦における項目コールドスタート問題を軽減するために,メタラーニングに基づくコールドスタートシーケンシャルレコメンデーションフレームワーク,mecosを提案する。
mecosは限られたインタラクションからユーザの好みを効果的に抽出し、ターゲットのコールドスタートアイテムと潜在的なユーザとのマッチングを学ぶ。
論文 参考訳(メタデータ) (2020-12-10T05:23:13Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
強化学習は、リコメンデータシステムに対する長期的なユーザの関心を最適化する上で大きな可能性を秘めている。
既存のRLベースのレコメンデーション手法では、ユーザが堅牢なレコメンデーションポリシーを学ぶために、多数のインタラクションが必要である。
本稿では,ユーザ適応の高速化を目的としたメタレベルモデルに基づく強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-04T08:58:35Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
我々は,アクティブラーニングシステムとユーザを協調的に(効率的に学習)するための,新しいアクティブラーニング手法を提案する。
本手法は,特定のユーザに対して,エクササイズの適切性を予測するために,学習を迅速かつ迅速に行う必要があるため,特に,この手法のメリットを生かした教育アプリケーションで研究する。
複数の学習戦略とユーザタイプを実際のユーザからのデータで評価し,代替手法がエンドユーザに適さない多くのエクササイズをもたらす場合,共同アプローチが両方の目標を満足できることを確認した。
論文 参考訳(メタデータ) (2020-05-09T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。