Multifractality in the interacting disordered Tavis-Cummings model
- URL: http://arxiv.org/abs/2302.14718v2
- Date: Thu, 8 Feb 2024 16:30:47 GMT
- Title: Multifractality in the interacting disordered Tavis-Cummings model
- Authors: Francesco Mattiotti, J\'er\^ome Dubail, David Hagenm\"uller, Johannes
Schachenmayer, Jean-Philippe Brantut, Guido Pupillo
- Abstract summary: We analyze the spectral and transport properties of the interacting disordered Tavis-Cummings model at half excitation filling.
We find that the bipartite entanglement entropy grows logarithmically with time.
We show that these effects are due to the combination of finite interactions and integrability of the model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the spectral and transport properties of the interacting
disordered Tavis-Cummings model at half excitation filling. We demonstrate that
a Poissonian level statistics coexists with eigenfunctions that are
multifractal (extended, but non-ergodic) in the Hilbert space, for all
strengths of light-matter interactions. This is associated with a lack of
thermalization for a local perturbation. We find that the bipartite
entanglement entropy grows logarithmically with time, similarly to many-body
localized systems, while the spin imbalance tends to zero for strong coupling,
in analogy to ergodic phases. We show that these effects are due to the
combination of finite interactions and integrability of the model. When a small
integrability-breaking perturbation (nearest-neighbor hopping) is introduced,
typical eigenfunctions become ergodic, seemingly turning the system into a
near-perfect conductor, contrary to the single-excitation noninteracting case.
We propose a realization of this model with cold atoms.
Related papers
- Anomalous localization in spin chains with tilted interactions [0.0]
lattice gauge theories involve dynamics of typically short-ranged interacting particles and dynamical fields.
We consider localization properties of a spin chain with interaction strength growing linearly along the chain as for the Schwinger model.
Our study is relevant for quantum simulators of lattice gauge theories implemented in state-of-the-art cold atom/ion devices.
arXiv Detail & Related papers (2024-01-25T18:16:52Z) - Robustness and eventual slow decay of bound states of interacting microwave photons in the Google Quantum AI experiment [0.0]
A recent Google Quantum AI experiment demonstrated the persistence of such collective excitations even when the integrability is broken.
We study the spectrum of the model realized in the experiment using exact diagonalization and physical arguments.
We find that isolated bands corresponding to the descendants of the exact bound states of the integrable model are clearly observable in the spectrum for a large range of system sizes.
arXiv Detail & Related papers (2023-07-20T18:00:30Z) - Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence [0.0]
We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
arXiv Detail & Related papers (2022-12-23T11:57:47Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Complex scaling flows in the quench dynamics of interacting particles [0.0]
Many-body systems driven out of equilibrium can exhibit scaling flows of the quantum state.
For a sudden quench to resonant interactions between particles we construct a new class of analytical scaling solutions.
arXiv Detail & Related papers (2022-03-11T17:21:51Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.