Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence
- URL: http://arxiv.org/abs/2212.12276v2
- Date: Fri, 13 Oct 2023 15:13:13 GMT
- Title: Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence
- Authors: Akash Mitra and Shashi C. L. Srivastava
- Abstract summary: We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the non-equilibrium dynamics of an isolated bipartite quantum
system, the sunburst quantum Ising model, under interaction quench. The
pre-quench limit of this model is two non-interacting integrable systems,
namely a transverse ising chain and finite number of isolated qubits. As a
function of interaction strength, the spectral fluctuation property goes from
Poisson to Wigner-Dyson statistics. We chose entanglement entropy as a probe to
study the approach to thermalization or lack of it in post-quench dynamics. In
the near-integrable limit, as expected, the linear entropy displays oscillatory
behavior while in the chaotic limit, it saturates. Along with the chaotic
nature of the time evolution generator, we show the importance of the role
played by the coherence of the initial state in deciding the nature of
thermalization. We further show that these findings are general by replacing
the Ising ring with a disordered $XXZ$ model with disorder strength putting it
in the many-body localized phase.
Related papers
- Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Multifractality in the interacting disordered Tavis-Cummings model [0.0]
We analyze the spectral and transport properties of the interacting disordered Tavis-Cummings model at half excitation filling.
We find that the bipartite entanglement entropy grows logarithmically with time.
We show that these effects are due to the combination of finite interactions and integrability of the model.
arXiv Detail & Related papers (2023-02-28T16:31:12Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Quantum coherence controls the nature of equilibration in coupled
chaotic systems [0.0]
Quantum coherence of the initial product states in the uncoupled eigenbasis can be viewed as a resource for equilibration and approach to thermalization.
Results are given for four distinct perturbation strength regimes, the ultra-weak, weak, intermediate, and strong regimes.
Maximally coherent initial states thermalize for any perturbation strength in spite of the fact that in the ultra-weak perturbative regime the underlying eigenstates of the system have a tensor product structure and are not at all thermal-like.
arXiv Detail & Related papers (2022-04-15T17:33:44Z) - Prethermalization in one-dimensional quantum many-body systems with
confinement [0.0]
Unconventional nonequilibrium phases with restricted correlation spreading and slow entanglement growth have been proposed to emerge in systems with confined excitations.
Here, we show that in confined systems the thermalization dynamics after a quantum quench instead exhibits multiple stages with well separated time scales.
The discussed prethermalization dynamics is directly relevant to generic one-dimensional, many-body systems with confined excitations
arXiv Detail & Related papers (2022-02-25T19:01:02Z) - Hidden Quantum Criticality and Entanglement in Quench Dynamics [0.0]
Entanglement exhibits universal behavior near the ground-state critical point where correlations are long-ranged and the thermodynamic entropy is vanishing.
A quantum quench imparts extensive energy and results in a build-up of entropy, hence no critical behavior is expected at long times.
We show that quantum criticality is hidden in higher-order correlations and becomes manifest via measures such as the mutual information and logarithmic negativity.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.