Anomalous localization in spin chains with tilted interactions
- URL: http://arxiv.org/abs/2401.14369v2
- Date: Mon, 24 Jun 2024 16:52:37 GMT
- Title: Anomalous localization in spin chains with tilted interactions
- Authors: Arindam Mallick, Jakub Zakrzewski,
- Abstract summary: lattice gauge theories involve dynamics of typically short-ranged interacting particles and dynamical fields.
We consider localization properties of a spin chain with interaction strength growing linearly along the chain as for the Schwinger model.
Our study is relevant for quantum simulators of lattice gauge theories implemented in state-of-the-art cold atom/ion devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulators of lattice gauge theories involve dynamics of typically short-ranged interacting particles and dynamical fields. Elimination of the latter via Gauss law leads to infinite range interactions as exemplified by the Schwinger model in a staggered formalism. This motivates the study of long-range interactions, not necessarily diminishing with the distance. Here we consider localization properties of a spin chain with interaction strength growing linearly along the chain as for the Schwinger model. We generalize the problem to models with different interaction ranges. Using exact diagonalization we find the participation ratio of all eigenstates, which allows us to quantify the localization volume in Hilbert space. Surprisingly, the localization volume changes nonmonotonically with the interaction range. Our study is relevant for quantum simulators of lattice gauge theories implemented in state-of-the-art cold atom/ion devices, and it could help to reveal hidden features in disorder-free confinement phenomena in long-range interacting systems.
Related papers
- Observation of many-body dynamical localization [12.36065516066796]
We present evidence for many-body dynamical localization for the Lieb-Liniger version of the many-body quantum kicked rotor.
Our results shed light on the boundary between the classical, chaotic world and the realm of quantum physics.
arXiv Detail & Related papers (2023-12-21T14:24:50Z) - Quantum frustrated Wigner chains [0.0]
A Wigner chain in a periodic potential is a paradigmatic example of geometric frustration with long-range interactions.
We show that their action is mapped into a massive, long-range (1+1) Thirring model, where the solitons are charged fermionic excitations over an effective Dirac sea.
arXiv Detail & Related papers (2023-11-24T10:29:55Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Multifractality in the interacting disordered Tavis-Cummings model [0.0]
We analyze the spectral and transport properties of the interacting disordered Tavis-Cummings model at half excitation filling.
We find that the bipartite entanglement entropy grows logarithmically with time.
We show that these effects are due to the combination of finite interactions and integrability of the model.
arXiv Detail & Related papers (2023-02-28T16:31:12Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Real space Mott-Anderson electron localization with long-range
interactions: exact and approximate descriptions [0.0]
This work investigates a real-space one-dimensional model of interacting electrons in the presence of a disordered potential.
The transition between delocalized and localized phases are characterized using two different indicators.
The performance of density functional approximations to reproduce the exact ground-state densities of this many-body localization model are gauged.
arXiv Detail & Related papers (2022-08-30T21:35:46Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Spreading of Correlations and Entanglement in the Long-Range Transverse
Ising Chain [0.0]
Long-range interactions allow for a form of causality in non-relativistic quantum models.
We show that a weak form of causality emerges, characterized by non-universal dynamical exponents.
Our results shed light on the propagation of information in long-range interacting lattice models.
arXiv Detail & Related papers (2020-11-23T09:30:06Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.