Kartezio: Evolutionary Design of Explainable Pipelines for Biomedical
Image Analysis
- URL: http://arxiv.org/abs/2302.14762v2
- Date: Fri, 22 Sep 2023 18:14:40 GMT
- Title: Kartezio: Evolutionary Design of Explainable Pipelines for Biomedical
Image Analysis
- Authors: K\'evin Cortacero, Brienne McKenzie, Sabina M\"uller, Roxana Khazen,
Fanny Lafouresse, Ga\"elle Corsaut, Nathalie Van Acker, Fran\c{c}ois-Xavier
Frenois, Laurence Lamant, Nicolas Meyer, B\'eatrice Vergier, Dennis G.
Wilson, Herv\'e Luga, Oskar Staufer, Michael L. Dustin, Salvatore Valitutti
and Sylvain Cussat-Blanc
- Abstract summary: We introduce Kartezio, a computational strategy that generates transparent and easily interpretable image processing pipelines.
The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks.
We also deployed Kartezio to solve semantic and instance segmentation problems in four real-world Use Cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: An unresolved issue in contemporary biomedicine is the overwhelming number
and diversity of complex images that require annotation, analysis and
interpretation. Recent advances in Deep Learning have revolutionized the field
of computer vision, creating algorithms that compete with human experts in
image segmentation tasks. Crucially however, these frameworks require large
human-annotated datasets for training and the resulting models are difficult to
interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic
Programming based computational strategy that generates transparent and easily
interpretable image processing pipelines by iteratively assembling and
parameterizing computer vision functions. The pipelines thus generated exhibit
comparable precision to state-of-the-art Deep Learning approaches on instance
segmentation tasks, while requiring drastically smaller training datasets, a
feature which confers tremendous flexibility, speed, and functionality to this
approach. We also deployed Kartezio to solve semantic and instance segmentation
problems in four real-world Use Cases, and showcase its utility in imaging
contexts ranging from high-resolution microscopy to clinical pathology. By
successfully implementing Kartezio on a portfolio of images ranging from
subcellular structures to tumoral tissue, we demonstrated the flexibility,
robustness and practical utility of this fully explicable evolutionary designer
for semantic and instance segmentation.
Related papers
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
Multi multiplexed imaging allows for simultaneous visualization of multiple biomarkers in a single section.
Data from multiplexed imaging requires sophisticated computational methods for preprocessing, segmentation, feature extraction, and spatial analysis.
PathML is an AI-powered platform that streamlines image analysis, making complex interpretation accessible for clinical and research settings.
arXiv Detail & Related papers (2024-11-01T18:02:41Z) - Deep ContourFlow: Advancing Active Contours with Deep Learning [3.9948520633731026]
We present a framework for both unsupervised and one-shot approaches for image segmentation.
It is capable of capturing complex object boundaries without the need for extensive labeled training data.
This is particularly required in histology, a field facing a significant shortage of annotations.
arXiv Detail & Related papers (2024-07-15T13:12:34Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - HistoCartography: A Toolkit for Graph Analytics in Digital Pathology [0.6299766708197883]
HistoCartography is a standardized python API with necessary preprocessing, machine learning and explainability tools to facilitate graph-analytics in computational pathology.
We have benchmarked the computational time and performance on multiple datasets across different imaging types and histopathology tasks.
arXiv Detail & Related papers (2021-07-21T13:34:14Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - A Survey on Deep Learning Methods for Semantic Image Segmentation in
Real-Time [0.0]
In many areas, such as robotics and autonomous vehicles, semantic image segmentation is crucial.
The success of medical diagnosis and treatment relies on the extremely accurate understanding of the data under consideration.
Recent developments in deep learning have provided a host of tools to tackle this problem efficiently and with increased accuracy.
arXiv Detail & Related papers (2020-09-27T20:30:10Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.