論文の概要: Novel Machine Learning Approach for Predicting Poverty using Temperature
and Remote Sensing Data in Ethiopia
- arxiv url: http://arxiv.org/abs/2302.14835v1
- Date: Tue, 28 Feb 2023 18:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 14:52:34.881974
- Title: Novel Machine Learning Approach for Predicting Poverty using Temperature
and Remote Sensing Data in Ethiopia
- Title(参考訳): エチオピアにおける温度・リモートセンシングデータを用いた貧困予測のための新しい機械学習手法
- Authors: Om Shah and Krti Tallam
- Abstract要約: 貧困データの欠如は、重要な人道的組織が大規模な危機に対応するのを妨げている。
本研究では,表面温度変化とリモートセンシングデータに基づく移動学習モデルを提案し,貧困率の予測に有用な特徴を抽出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many developing nations, a lack of poverty data prevents critical
humanitarian organizations from responding to large-scale crises. Currently,
socioeconomic surveys are the only method implemented on a large scale for
organizations and researchers to measure and track poverty. However, the
inability to collect survey data efficiently and inexpensively leads to
significant temporal gaps in poverty data; these gaps severely limit the
ability of organizational entities to address poverty at its root cause. We
propose a transfer learning model based on surface temperature change and
remote sensing data to extract features useful for predicting poverty rates.
Machine learning, supported by data sources of poverty indicators, has the
potential to estimate poverty rates accurately and within strict time
constraints. Higher temperatures, as a result of climate change, have caused
numerous agricultural obstacles, socioeconomic issues, and environmental
disruptions, trapping families in developing countries in cycles of poverty. To
find patterns of poverty relating to temperature that have the highest
influence on spatial poverty rates, we use remote sensing data. The two-step
transfer model predicts the temperature delta from high resolution satellite
imagery and then extracts image features useful for predicting poverty. The
resulting model achieved 80% accuracy on temperature prediction. This method
takes advantage of abundant satellite and temperature data to measure poverty
in a manner comparable to the existing survey methods and exceeds similar
models of poverty prediction.
- Abstract(参考訳): 多くの発展途上国では、貧困データがないため、重要な人道的組織は大規模な危機に対応できない。
現在、社会経済調査は、貧困を計測し追跡する組織や研究者にとって、大規模に実施されている唯一の方法である。
しかし, 調査データを効率的にかつ安価に収集できないことは, 貧困データに時間的ギャップを生じさせる。
本研究では,表面温度変化とリモートセンシングデータに基づく移動学習モデルを提案し,貧困率の予測に有用な特徴を抽出する。
貧困指標のデータソースによって支持される機械学習は、厳しい時間制約の中で、貧困率を正確に推定する可能性がある。
気候変動の結果として、高温は農業の障害、社会経済的問題、環境破壊を引き起こし、発展途上国の家族を貧困のサイクルに閉じ込めている。
空間的貧困率に最も影響を及ぼす気温に関連する貧困パターンを見つけるために,リモートセンシングデータを用いる。
2段階移動モデルは、高解像度衛星画像から温度デルタを予測し、貧困予測に有用な画像特徴を抽出する。
その結果, 温度予測精度は80%向上した。
本手法は,既存の調査手法に匹敵する方法で貧困を計測するために衛星データと温度データを利用し,類似した貧困予測モデルを超える。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Fairness and representation in satellite-based poverty maps: Evidence of
urban-rural disparities and their impacts on downstream policy [5.456665139074406]
本稿では,都市部および農村部における衛星による貧困マッピングにおける表現の格差,予測誤差の体系的バイアス,公平性の懸念について検討する。
本研究は,衛星による貧困マップを現実の政策決定に利用する前に,注意深い誤りとバイアス分析の重要性を強調した。
論文 参考訳(メタデータ) (2023-05-02T21:07:35Z) - Learning and Reasoning Multifaceted and Longitudinal Data for Poverty
Estimates and Livelihood Capabilities of Lagged Regions in Rural India [22.98110639419913]
このプロジェクトは、生活の質と生活の指標に基づいて、1990-2022年のインド農村の貧困状況を調べることを目的としている。
また、因果関係や縦断的分析も検討し、貧困の原因について検討する。
論文 参考訳(メタデータ) (2023-04-27T05:33:08Z) - Interpreting wealth distribution via poverty map inference using
multimodal data [0.0]
本稿では,複数の人口にまたがる富の平均および標準偏差を推論する機械学習モデルのパイプラインを提案する。
これらのモデルは、衛星画像と、オンラインのクラウドソーシングとソーシャルメディアを通じて収集されたメタデータに基づいて、7つの独立した、自由に利用可能な機能ソースを利用する。
その結果, 富の局所的平均と変動が回復し, 正の非単調な相関関係を正しく捉えた。
論文 参考訳(メタデータ) (2023-02-17T11:35:44Z) - Graph-based Village Level Poverty Identification [52.12744462605759]
Webインフラストラクチャとそのモデリングツールの開発は、貧しい村を識別するための新しいアプローチを提供する。
地理的距離を通して村の接続をグラフとしてモデル化することにより,村の貧困状況とグラフトポロジ的位置との相関関係を示す。
貧しい村を識別する最初のグラフベース手法を提案する。
論文 参考訳(メタデータ) (2023-02-14T06:58:40Z) - Predicting Poverty Level from Satellite Imagery using Deep Neural
Networks [0.0]
頭上衛星画像から地域の貧困レベルを予測する深層学習型コンピュータビジョン手法を開発した。
データ量とデータ拡張がネットワークの表現力と全体的な精度に与える影響について検討する。
論文 参考訳(メタデータ) (2021-11-30T18:57:24Z) - Interpretable Poverty Mapping using Social Media Data, Satellite Images,
and Geospatial Information [0.0]
本稿では、機械学習とアクセスしやすいデータソースを用いた貧困推定に対する解釈可能かつ費用効率のよいアプローチを提案する。
フィリピンの資産推定ではR2ドル0.66ドル、衛星画像では0.63ドルである。
論文 参考訳(メタデータ) (2020-11-27T05:24:53Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
本稿では,クラウドソースによるストリートレベルの画像から重要な生活指標を予測するための,安価でスケーラブルで解釈可能なアプローチを提案する。
全国的に代表される世帯調査で収集した地上データと比較することにより,貧困,人口,健康の指標を正確に予測する上でのアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T18:12:12Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
衛星画像に物体検出装置を適用することにより、局所レベルでの貧困を正確に予測するための解釈可能な計算手法を実証する。
対象物の重み付けを特徴として、ウガンダの村レベルの貧困を予測する0.539 Pearson's r2を達成し、既存の(解釈不可能でない)ベンチマークよりも31%改善した。
論文 参考訳(メタデータ) (2020-02-05T02:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。