Chiral quantum optics in the bulk of photonic quantum Hall systems
- URL: http://arxiv.org/abs/2302.14863v2
- Date: Fri, 21 Jul 2023 14:11:43 GMT
- Title: Chiral quantum optics in the bulk of photonic quantum Hall systems
- Authors: Daniele De Bernardis, Francesco Piccioli, Peter Rabl, and Iacopo
Carusotto
- Abstract summary: We study light-matter interactions in the bulk of a two-dimensional photonic lattice system.
Chiral waveguide modes appear in the bulk region of the lattice.
We show that this mechanism can be generalized to arbitrary in-plane synthetic potentials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study light-matter interactions in the bulk of a two-dimensional photonic
lattice system, where photons are subject to the combined effect of a synthetic
magnetic field and an orthogonal synthetic electric field. In this
configuration, chiral waveguide modes appear in the bulk region of the lattice,
in direct analogy to transverse Hall currents in electronic systems. By
evaluating the non-Markovian dynamics of emitters that are coupled to those
modes, we identify critical coupling conditions, under which the shape of the
spontaneously emitted photons becomes almost fully symmetric. Combined with a
directional, dispersionless propagation, this property enables a complete
reabsorption of the photon by another distant emitter, without relying on any
time-dependent control. We show that this mechanism can be generalized to
arbitrary in-plane synthetic potentials, thereby enabling flexible realizations
of re-configurable networks of quantum emitters with arbitrary chiral
connectivity.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Waveguide QED with Quadratic Light-Matter Interactions [0.0]
We show that a single quadratically-coupled emitter can implement a two-photon logic gate with unit fidelity.
This unlocks new opportunities in quantum information processing with propagating photons.
arXiv Detail & Related papers (2023-03-13T18:01:44Z) - Optical polaron formation in quantum systems with permanent dipoles [0.0]
We derive a master equation for optically active systems with spatially asymmetric electron orbitals.
Permanent dipole moments can significantly affect the system dynamics and create polarised Fock states of light.
We derive the emission spectrum of the system, highlighting experimentally detectable signatures of optical polarons.
arXiv Detail & Related papers (2023-03-07T15:52:54Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - A versatile quantum simulator for coupled oscillators using a 1D chain
of atoms trapped near an optical nanofiber [0.0]
transversely confined propagating light modes of a nano-photonic optical waveguide or nanofiber can mediate effectively infinite-range forces.
We show that for a linear chain of particles trapped within the waveguide's evanescent field, transverse illumination with a suitable set of laser frequencies should allow the implementation of a coupled-oscillator quantum simulator.
arXiv Detail & Related papers (2021-05-07T13:42:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Phonon-induced anomalous gauge potential for photonic isolation in
frequency space [6.173238771499381]
Photonic gauge potentials are crucial for manipulating charge-neutral photons like their counterpart electrons in the electromagnetic field.
Here we experimentally demonstrate phonon-induced anomalous gauge potentials with non-inverted gauge phases in a spatial-frequency space.
We construct photonic isolators in the frequency domain permitting nonreciprocal propagation of light along the frequency axis.
arXiv Detail & Related papers (2020-08-07T06:44:00Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.