Representation Disentaglement via Regularization by Causal
Identification
- URL: http://arxiv.org/abs/2303.00128v3
- Date: Fri, 26 Jan 2024 18:43:01 GMT
- Title: Representation Disentaglement via Regularization by Causal
Identification
- Authors: Juan Castorena
- Abstract summary: We propose the use of a causal collider structured model to describe the underlying data generative process assumptions in disentangled representation learning.
For this, we propose regularization by identification (ReI), a modular regularization engine designed to align the behavior of large scale generative models with the disentanglement constraints imposed by causal identification.
- Score: 3.9160947065896803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose the use of a causal collider structured model to
describe the underlying data generative process assumptions in disentangled
representation learning. This extends the conventional i.i.d. factorization
assumption model $p(\mathbf{y}) = \prod_{i} p(\mathbf{y}_i )$, inadequate to
handle learning from biased datasets (e.g., with sampling selection bias). The
collider structure, explains that conditional dependencies between the
underlying generating variables may be exist, even when these are in reality
unrelated, complicating disentanglement. Under the rubric of causal inference,
we show this issue can be reconciled under the condition of causal
identification; attainable from data and a combination of constraints, aimed at
controlling the dependencies characteristic of the \textit{collider} model. For
this, we propose regularization by identification (ReI), a modular
regularization engine designed to align the behavior of large scale generative
models with the disentanglement constraints imposed by causal identification.
Empirical evidence on standard benchmarks demonstrates the superiority of ReI
in learning disentangled representations in a variational framework. In a
real-world dataset we additionally show that our framework, results in
interpretable representations robust to out-of-distribution examples and that
align with the true expected effect from domain knowledge.
Related papers
- Generalized Criterion for Identifiability of Additive Noise Models Using Majorization [7.448620208767376]
We introduce a novel identifiability criterion for directed acyclic graph (DAG) models.
We demonstrate that this criterion extends and generalizes existing identifiability criteria.
We present a new algorithm for learning a topological ordering of variables.
arXiv Detail & Related papers (2024-04-08T02:18:57Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error [29.78435955758185]
We focus on causal discovery in the presence of measurement error in linear systems.
We demonstrate a surprising connection between this problem and causal discovery in the presence of unobserved parentless causes.
arXiv Detail & Related papers (2022-11-08T03:43:14Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM)
Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity.
We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality.
arXiv Detail & Related papers (2022-07-04T16:53:20Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.