Generalized Criterion for Identifiability of Additive Noise Models Using Majorization
- URL: http://arxiv.org/abs/2404.05148v1
- Date: Mon, 8 Apr 2024 02:18:57 GMT
- Title: Generalized Criterion for Identifiability of Additive Noise Models Using Majorization
- Authors: Aramayis Dallakyan, Yang Ni,
- Abstract summary: We introduce a novel identifiability criterion for directed acyclic graph (DAG) models.
We demonstrate that this criterion extends and generalizes existing identifiability criteria.
We present a new algorithm for learning a topological ordering of variables.
- Score: 7.448620208767376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The discovery of causal relationships from observational data is very challenging. Many recent approaches rely on complexity or uncertainty concepts to impose constraints on probability distributions, aiming to identify specific classes of directed acyclic graph (DAG) models. In this paper, we introduce a novel identifiability criterion for DAGs that places constraints on the conditional variances of additive noise models. We demonstrate that this criterion extends and generalizes existing identifiability criteria in the literature that employ (conditional) variances as measures of uncertainty in (conditional) distributions. For linear Structural Equation Models, we present a new algorithm that leverages the concept of weak majorization applied to the diagonal elements of the Cholesky factor of the covariance matrix to learn a topological ordering of variables. Through extensive simulations and the analysis of bank connectivity data, we provide evidence of the effectiveness of our approach in successfully recovering DAGs. The code for reproducing the results in this paper is available in Supplementary Materials.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Scalable Variational Causal Discovery Unconstrained by Acyclicity [6.954510776782872]
We propose a scalable Bayesian approach to learn the posterior distribution over causal graphs given observational data.
We introduce a novel differentiable DAG sampling method that can generate a valid acyclic causal graph.
We are able to model the posterior distribution over causal graphs using a simple variational distribution over a continuous domain.
arXiv Detail & Related papers (2024-07-06T07:56:23Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Sequential Learning of the Topological Ordering for the Linear
Non-Gaussian Acyclic Model with Parametric Noise [6.866717993664787]
We develop a novel sequential approach to estimate the causal ordering of a DAG.
We provide extensive numerical evidence to demonstrate that our procedure is scalable to cases with possibly thousands of nodes.
arXiv Detail & Related papers (2022-02-03T18:15:48Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables [13.299431908881425]
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs is well studied.
corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output.
We bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome.
arXiv Detail & Related papers (2020-03-27T22:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.